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ABSTRACT

Musical mixtures can be modeled as being composed of
two characteristic sources: singing voice and background
music. Many music/voice separation techniques tend to
focus on modeling one source; the residual is then used to
explain the other source. In such cases, separation per-
formance is often unsatisfactory for the source that has
not been explicitly modeled. In this work, we propose
to combine a method that explicitly models singing voice
with a method that explicitly models background music,
to address separation performance from the point of view
of both sources. One method learns a singer-independent
model of voice from singing examples using a Non-negative
Matrix Factorization (NMF) based technique, while the
other method derives a model of music by identifying and
extracting repeating patterns using a similarity matrix and
a median filter. Since the model of voice is singer-inde-
pendent and the model of music does not require training
data, the proposed method does not require training data
from a user, once deployed. Evaluation on a data set of
1,000 song clips showed that combining modeling of both
sources can improve separation performance, when com-
pared with modeling only one of the sources, and also com-
pared with two other state-of-the-art methods.

1. INTRODUCTION

The ability to separate a musical mixture into singing voice
and background music can be useful for many applica-
tions, e.g., query-by-humming, karaoke, audio remixing,
etc. Existing methods for music/voice separation typically
focus on estimating either the background music, e.g., by
training a model for the accompaniment from the non-vocal
segments, or the singing voice, e.g., by identifying the pre-
dominant pitch contour from the vocal segments.

Some methods estimate the background music by train-
ing a model on the non-vocal segments in the mixture,
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identified manually or using trained vocal/non-vocal clas-
sifiers. Ozerov et al. used Bayesian models to train a model
for the background music from the non-vocal segments,
which they then used to train a model for the singing voice
[7]. Han et al. used Probabilistic Latent Component Anal-
ysis (PLCA) to also train a model for the background mu-
sic, which they then used to estimate the singing voice [2].

Other methods estimate the background music directly,
without prior vocal/non-vocal segmentation, by assuming
the background to be repeating and the foreground (i.e.,
the singing voice) non-repeating. Rafii et al. used a beat
spectrum to identify the periodically repeating patterns in
the mixture, followed by median filtering the spectrogram
of the mixture at period rate to estimate the background
music [9]. Liutkus et al. used a beat spectrogram to further
identify the varying periodically repeating patterns [6].

Other methods instead estimate the singing voice by
identifying the predominant pitch contour in the mixture.
Li et al. used a pitch detection algorithm on the vocal
segments in the mixture to estimate the predominant pitch
contour, which they then used to derive a time-frequency
mask to extract the singing voice [5]. Hsu et al. also used a
pitch-based method to model the singing voice, while ad-
ditionally estimating the unvoiced components [3].

Other methods are based on matrix decomposition tech-
niques. Vembu et al. used Independent Component Anal-
ysis (ICA) and Non-negative Matrix Factorization (NMF)
to decompose a mixture into basic components, which they
then clustered into background music and singing voice us-
ing trained classifiers such as neural networks and Support
Vector Machines (SVM) [12]. Virtanen et al. used a pitch-
based method to estimate the vocal segments of the singing
voice, and then NMF to train a model for the background
music from the remaining non-vocal segments [14].

Other methods estimate both sources concurrently. Dur-
rieu et al. used a source-filter model to parametrize the
singing voice and a NMF model to parametrize the back-
ground music, and then estimated the parameters of their
models jointly using an iterative algorithm [1]. Huang et
al. used Robust Principal Component Analysis (RPCA) to
jointly estimate background music and singing voice, as-
suming the background music as a low-rank component
and the singing voice as a sparse component [4].

In this work, we propose a method for modeling the



singing voice, which learns a singer-independent model
of voice from singing examples using a NMF based tech-
nique. We then propose to combine this method with a
method for modeling the background music, which de-
rives a model of music by identifying and extracting re-
peating patterns using a similarity matrix and a median
filter. Combining a method that specifically models the
singing voice with a method that specifically models the
background music addresses separation performance from
the point of view of both sources.

The rest of the article is organized as follows. In Section
2, we present a method for modeling singing voice. In Sec-
tion 3, we review an existing method for modeling back-
ground music, and we propose combining the two methods
to improve music/voice separation. In Section 4, we eval-
uate the method for modeling the singing voice and the
combined approach on a data set of 1,000 song clips, and
we compare them with the method for modeling the back-
ground music alone, and two other state-of-the-art meth-
ods. Section 5 concludes this article.

2. MODELING SINGING VOICE

In this section, we present a method for modeling the sing-
ing voice. Because singer-specific training examples are
generally not available for the music/voice separation meth-
ods, models for the singing voice are typically based on a
priori assumptions, e.g., it has a sparse time-frequency rep-
resentation [4], it is accurately modeled by a source-filter
model [1], or it is reasonably described by pitch [5].

Recently, universal models were proposed as a method
for incorporating general training examples of a sound class
for source separation when specific training examples are
not available [11]. We use these ideas to model the singing
voice using a universal voice model, learned from a corpus
of singing voice examples. Since the formulation of uni-
versal voice models is based on matrix factorization meth-
ods for source separation, we begin by reviewing Non-
negative Matrix Factorization (NMF).

2.1 NMF for Source Separation

The magnitude spectrogram X is a matrix of non-negative
numbers. We assume that the spectrum at time t, Xt, can
be approximated by a linear combination of basis vectors
wi, each capturing a different aspect of the sound, e.g.,
different pitches, transients, etc.:

Xt ≈
K∑
i=1

hitwi

The collection of basis vectors W =
[
w1 ... wK

]
can

be regarded as a model for that sound class, since all pos-
sible sounds are assumed to arise as linear combinations of
these basis vectors. Likewise, H = (hit) can be regarded
as the activations of the basis vectors over time. In matrix
notation, this can be expressed as:

X ≈WH.

NMF attempts to learn W and H for a given spectrogram
X , i.e., it solves the optimization problem:

minimize
W, H

D (X||WH)

subject to the constraints that W and H are non-negative.
D is a measure of divergence between X and WH .

To use NMF to separate two sources, say, singing voice
and background music:

1. Learn W V using NMF from isolated examples of
the singing voice.

2. Learn WB using NMF from isolated examples of
the background music.

3. Use NMF on the mixture spectrogram X , fixing
W =

[
W V WB

]
, and learning HV and HB .

4. Estimates of the singing voice-only and background
music-only spectrograms can be obtained from
W V HV and WBHB .

A more detailed description of this approach can be found
in [10], although the authors use an equivalent probabilistic
formulation (PLCA) instead of NMF.

Of these tasks, steps 1 and 2 pose the greatest challenge.
While it may be possible to use the non-vocal segments of
the background music as isolated training data of the back-
ground music, it is rare to find segments in music where
the voice is isolated. Source separation is still possible
in this setting where training data of only one source is
available—one simply learns W V together with HV and
HB in step 3. This is the approach taken in [2, 7], but it
requires a sufficiently accurate prior vocal/non-vocal seg-
mentation and a sufficient amount of non-vocal segments
to effectively learn a model of the background music.

2.2 Universal Voice Model

One alternative when training data of a specific singer is
not available is to learn a model from a corpus of singing
voice examples. The universal model is a prescription for
learning a model from general training examples and incor-
porating the model in NMF-based source separation [11].

The idea is to independently learn a matrix of basis vec-
tors for each of M singers from training data of the in-
dividual singers. This yields M matrices of basis vectors
W 1, ...,WM . The universal voice model is then simply
the concatenation of the matrices of basis vectors:

W V =
[
W 1 ... WM

]
The hope is that an unseen singer is sufficiently simi-

lar to one or a blend of a few of these singers, so that the
universal voice model can act as a singer-independent sur-
rogate for singer dependent models.

In applying the universal voice model for source sepa-
ration, we make the assumption that the activation matrix
for the singing voice

HV =

H1

...
HM





is block sparse, i.e., several of the Hi ≡ 0. This is neces-
sary because the number of singers is typically large, and
the matrix factorization problem can be underdetermined.
The block sparsity is a regularization strategy that incorpo-
rates the structure of the problem; it captures the intuition
that only a few voice models should be sufficient to explain
any given singer. We achieve block sparsity by adding a
penalty function Ω to the objective function to encourages
this structure. λ controls the strength of the penalty term.

minimize
W, H

D (X||WH) + λΩ(HV ) (1)

As in [11], we choose the Kullback-Leibler divergence for
D:

D(Y ||Z) =
∑
i,j

Yij log
Yij
Zij
− Yij + Zij

and a concave penalty on the `1 norm of the block:

Ω(HV ) =

M∑
i=1

log(ε+ ||Hi||1)

The algorithm for optimizing (1) is known as Block KL-
NMF. Further details can be found in [11].

3. COMBINED APPROACH

In this section, we review an existing method for modeling
the background music, and we propose to use it to refine
the residual from the singing voice modeling.

3.1 Modeling Background Music

A number of methods have been proposed to estimate the
background music, without prior vocal/non-vocal segmen-
tation, by assuming the background to be repeating and
the foreground (i.e., the singing voice) to be non-repeat-
ing. REPET-SIM is thus a generalization of the REpeat-
ing Pattern Extraction Technique (REPET) 1 , a simple ap-
proach for separating the repeating background from the
non-repeating foreground in a mixture, by identification
of the repeating elements and the smoothing of the non-
repeating elements.

In particular, REPET-SIM uses a similarity matrix to
identify the repeating elements in the mixture - which ide-
ally correspond to the background music, followed by me-
dian filtering to smooth out the non-repeating elements -
which ideally correspond to the singing voice [8]. Unlike
the earlier variants of REPET that use a beat spectrum or
beat spectrogram to identify the periodically repeating pat-
terns [6, 9], REPET-SIM uses a similarity matrix and is
thus able to handle backgrounds where repeating patterns
can also happen non-periodically.

3.2 Combined Approach

In order to improve the music/voice separation that we ob-
tain from using the universal voice model alone, we pro-
pose cascading the model with REPET-SIM. The idea is

1 http://music.eecs.northwestern.edu/research.php?project=repet
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Figure 1. Combined approach which takes in the spectro-
gram of a mixture X and returns refined estimates of the
spectrogram of the singing voice XV and the background
music XB

that the universal voice model specifically models the sing-
ing voice and, through the residual, provides a preliminary
estimate of the background music, which can then be re-
fined by feeding it to REPET-SIM. The pipeline is shown
in Figure 1, and detailed below.

The universal voice model first outputs an estimate for
the magnitude spectrogram of the singing voice X(1)

V , and
a residual X(1)

B corresponding to the background estimate,
which are initially filtered into X

(2)
V and X

(2)
B by using

Wiener filtering, as follows:

X
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V
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X
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X
(1)
V +X

(1)
B

�X
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where X denotes the complex spectrogram of the mixture
and � the Hadamard (component-wise) product. Wiener
filtering is used here to reduce separation artifacts. Note
that we only use the magnitudes of the estimates here.

The background estimate from the universal voice model
X

(2)
B is then fed to REPET-SIM which refines it into X(3)

B .
The estimates for the complex spectrogram of the singing

voice XV and the background music XB are finally ob-
tained by filteringX(2)

V andX(3)
B using Wiener filtering, as

follows:

XV =
X

(2)
V

X
(2)
V +X

(3)
B

�X

XB =
X

(3)
B

X
(2)
V +X

(3)
B
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4. EVALUATION

In this section, we evaluate the method for modeling the
singing voice and the combined approach on a data set of
1,000 song clips. We also compare them with the method
for modeling the background music alone, as well as two
other state-of-the-art methods.



4.1 Data Set

The MIR-1K data set 2 consists of 1,000 song clips in the
form of split stereo WAV files sampled at 16 kHz, with the
background music and the singing voice recorded on the
left and right channels, respectively. The song clips were
extracted from 110 karaoke Chinese pop songs performed
by 8 female and 11 male singers. The durations of the clips
range from 4 to 13 seconds [3].

We created a set of 1,000 mixtures by summing, for
each song clip, the left (background music) and right (sing-
ing voice) channels into a monaural mixture

4.2 Performance Measures

The BSS Eval toolbox 3 consists of a set of measures that
intend to quantify the quality of the separation between a
source and its estimate. The principle is to decompose an
estimate into a number of contributions corresponding to
the target source, the interference from unwanted sources,
and the artifacts such as “musical noise.”

Based on this principle, the following measures were
then defined (in dB): Sources to Interferences Ratio (SIR),
Sources to Artifacts Ratio (SAR), and Sources to Distor-
tion Ratio (SDR) which measures the overall error [13].

4.3 Competitive Methods

Durrieu et al. proposed a method 4 based on the modeling
of a mixture as an instantaneous sum of a signal of inter-
est (i.e., the singing voice) and a residual (i.e., the back-
ground music), where the singing voice is parametrized as
a source-filter model, and the background music as an un-
constrained NMF model [1]. The parameters of the models
are then estimated using an iterative algorithm in a formal-
ism similar to NMF. A white noise spectrum is added to the
singing voice model to better capture the unvoiced compo-
nents. We used an analysis window of 64 milliseconds, a
window size of 1024 samples, a step size of 32 millisec-
onds, and 30 iterations.

Huang et al. proposed a method 5 based on Robust Prin-
cipal Component Analysis (RPCA) [4]. RPCA is a method
for decomposing a data matrix into a low-rank component
and a sparse component, by solving a convex optimiza-
tion problem that aims to minimize a weighted combina-
tion of the nuclear norm and the L1 norm. The method
assumes that the background music typically corresponds
to the low-rank component and the singing voice typically
corresponds to the sparse component.

4.4 Training Universal Models

Our experiments used a leave-one-out cross validation ap-
proach. For each of the 19 singers, we learned a univer-
sal model using NMF on the other 18 singers, with dif-
ferent choices for the number of basis vectors per singer:
K = 5, 10, 20, 30, 40, 50, 60.

2 http://sites.google.com/site/unvoicedsoundseparation/mir-1k
3 http://bass-db.gforge.inria.fr/bss eval/
4 http://www.durrieu.ch/research/jstsp2010.html
5 https://sites.google.com/site/singingvoiceseparationrpca/

4.5 Parameters

We used a Hamming window of 1024 samples, correspond-
ing to a duration of 64 milliseconds at a sampling fre-
quency of 16 kHz, with 50% overlap.

For REPET-SIM 6 , pilot experiments showed that a min-
imal threshold of 0, a maximal order of 50, and a minimal
distance of 0.1 second gave good separation results.

For the universal voice model, pilot experiments showed
that different settings of K, KB (number of background
music basis vectors), and λ yielded optimal results for dif-
ferent measures (see Section 4.2) of the separation quality
of singing voice and background music. We considered
K = 5, 10, 20, ..., 60, KB = 5, 10, 20, 30, 50, 80, and a
logarithmic grid of λ values.

4.6 Comparative Results

Figures 2, 3, and 4 show the boxplots of the distributions
for the SDR, SIR, and SAR (in dB) for the background mu-
sic (left plot) and the singing voice (right plot) estimates,
for the method of Durrieu et al. (Durrieu), the method of
Huang et al. (Huang), REPET-SIM alone (REPET), uni-
versal voice model alone (UVM), and the combination of
universal voice model and REPET-SIM (combo). The hor-
izontal line in each box represent the median of the distri-
bution, whose value is displayed above the box. Outliers
are not shown. Higher values are better.

We used two parameter settings for the universal voice
model: one that gave the best SDR for the background mu-
sic estimates (K = 20, KB = 5, and λ = 1448), and
one that gave the best SDR for the singing voice estimates
(K = 10, KB = 5, and λ = 2896). The boxplots then
show the results for the background music estimates (left
plots) and the singing voice estimates (right plots) for the
parameter settings that gave the best SDR, for the universal
voice model (UVM) and the combination (combo).

The plots show that the universal voice model alone,
for the right parameter settings, achieves higher SDR than
REPET-SIM and the other state-of-the-art methods, for both
the background music and the singing voice estimates. Com-
bining the universal voice model with REPET-SIM typi-
cally yields further improvement.

If we focus on SIR, for the background music estimates,
the universal voice model alone achieves higher SIR than
REPET-SIM and the other competitive methods; the com-
bination further increases the SIR. For the singing voice
estimates, the universal voice model alone achieves higher
SIR than REPET-SIM and the method of Huang et al., but
the combination does no better than the universal voice
model alone.

On the other hand, if we focus on SAR, for the back-
ground music estimates, the universal voice model alone
has slightly lower SAR than REPET-SIM and the other
competitive methods; the combination further decreases
the SAR. For the singing voice estimates, the universal
voice model alone has higher SAR than the method of Dur-
rieu et al.; the combination further improves the results.

6 http://music.eecs.northwestern.edu/includes/projects/repet/codes/repet sim.m



Figure 2. Box plots of the distributions for the SDR (dB).

These results show that, given the right parameter set-
tings, the universal voice model is particularly good at re-
ducing in one source the interference of the other source,
however at the expense of adding some artifacts in the es-
timates. This is related to the SIR/SAR performance trade-
off commonly seen in source separation.

The results also show that combining the universal voice
model with REPET-SIM helps to increase the SIR for the
background music estimates and the SAR for the singing
voice estimates, but at the expense of decreasing the SAR
for the background music estimates and the SIR for the
singing voice estimates. This is related to the music/voice
performance trade-off commonly seen in music/voice sep-
aration. In other words, the combination helps to reduce in
the background music estimates the interference from the
singing voice but at the expense of introducing some arti-
facts in the estimates. On the other hand, it helps to reduce
artifacts in the singing voice estimates, at the expense of
introducing interference from the background music.

4.7 Statistical Analysis

We compared the SDR of the background music and sing-
ing voice estimates across the different methods using a
two-sided paired t-test. The universal voice model alone
achieved a significantly higher SDR on the background
music than the three state-of-the-art methods: the closest
competitor was REPET-SIM (t = 3.92, p < .0001). The
combination represented a significant improvement over
the universal model alone (t = 19.4, p ≈ 0). A similar
story is true for the SDR of the singing voice estimates:
the universal voice model alone is significantly better than
any of the existing methods, with the method of Durrieu
et al. the closest competitor (t = 6.13, p ≈ 0), and the
combination represents a significant improvement over it
(t = 13.8, p ≈ 0).

In terms of the SIR of the background music estimates,

Figure 3. Box plots of the distributions for the SIR (dB).

the combination is significantly better than the universal
voice model alone (t = 37.7, p ≈ 0), which is signif-
icantly better than any of the existing methods, with the
closest competitor being REPET-SIM (t = 7.75, p ≈ 0).
For the SIR of the singing voice estimates, the universal
voice model is not significantly different from the method
of Durrieu et al. (t = −0.29, p = .77), but significantly
better than the other existing methods, and also the combi-
nation (t = 20.1, p ≈ 0).

Finally, for the SAR of the background music estimates,
the universal voice model is competitive with REPET-SIM
(t = −1.26, p = 0.21), but significantly worse than the
other competitive methods (t = 9.61 and t = 13.2). On
the other hand, in terms of the SAR of the singing voice es-
timates, the combination performs significantly better than
the universal voice model (t = 50.1), which in turn is sig-
nificantly better than the method of Durrieu et al. (t =
9.69). However, both are significantly worse than the other
two competitors, the closest being the method of Huang et
al. (t = −15.6).

Note that there are 7 tests for each configuration of the
three measures (SDR, SIR, SAR) and the two sources (back-
ground music and singing voice): comparing the universal
voice model and the combination to each of the three com-
petitors, and then comparing the universal voice model to
the combination. Therefore, we are implicitly conducting
a total of 3 × 2 × 7 = 42 tests. All of the findings above
remain significant at the α = .05 level if we use a Bonfer-
roni correction to adjust for the 42 tests, corresponding to
a rejection region of |t| > 3.25. These results confirm the
findings in Figures 2, 3, and 4.

5. CONCLUSION

In this work, we proposed a method for modeling the singing
voice. The method can learn a singer-independent model
from singing examples using a NMF based technique. We



Figure 4. Box plots of the distributions for the SAR (dB).

then proposed to combine this method with a method that
models the background music. Combining a method that
specifically models the singing voice with a method that
specifically models the background music addresses sepa-
ration performance from the point of view of both sources.

Evaluation on a data set of 1,000 song clips showed
that, when using the right parameter settings, the univer-
sal voice model can outperform different state-of-the-art
methods. Combining modeling of both sources can fur-
ther improve separation performance, when compared with
modeling only one of the sources.

This work was supported in part by NSF grant number
IIS-0812314.
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