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Kernel Additive Models for Source Separation
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Abstract—Source separation consists of separating a signal into
additive components. It is a topic of considerable interest with
many applications that has gathered much attention recently.
Here, we introduce a new framework for source separation called
Kernel Additive Modelling, which is based on local regression
and permits efficient separation of multidimensional and/or non-
negative and/or non-regularly sampled signals. The main idea
of the method is to assume that a source at some location can
be estimated using its values at other locations nearby, where
nearness is defined through a source-specific proximity kernel.
Such a kernel provides an efficient way to account for features
like periodicity, continuity, smoothness, stability over time or
frequency, and self-similarity. In many cases, such local dynamics
are indeed much more natural to assess than any global model
such as a tensor factorization. This framework permits one to use
different proximity kernels for different sources and to separate
them using the iterative kernel backfitting algorithm we describe.
As we show, kernel additive modelling generalizes many recent
and efficient techniques for source separation and opens the path
to creating and combining source models in a principled way.
Experimental results on the separation of synthetic and audio
signals demonstrate the effectiveness of the approach.

Index Terms—Source separation, kernel method, nonpara-
metric models, local regression.

I. INTRODUCTION

S OURCE separation (see [1] for a review) is a research
field that has gathered much attention during the last 30

years. Its objective is to recover several unknown signals called
sources that were mixed into observable mixtures. It has appli-
cations in telecommunication, audio processing, latent compo-
nents analysis, biological signals processing, etc.
The objective of blind source separation is to estimate the

sources given the mixtures only. There are many ways to for-
mulate this problem and many different approaches have been

Manuscript received September 06, 2013; revised March 10, 2014; accepted
June 12, 2014. Date of publication June 24, 2014; date of current version
July 18, 2014. The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. Andrzej Cichocki. LD is partly
supported by the DReaM project of the French Agence Nationale de la
Recherche (ANR-09-CORD-006, under CONTINT program). This work is
partly supported by LABEXWIFI (Laboratory of Excellence within the French
Program “Investments for the Future”) under references ANR-10-LABX-24
and ANR-10-IDEX-0001-02 PSL.
A. Liutkus is with the Inria, Villers-lès-Nancy, F-54600, France, the Univer-

sité de Lorraine, LORIA, UMR 7503, Villers-lès-Nancy, F-54600, France, and
also with the CNRS, LORIA, UMR 7503, Villers-lès-Nancy, F-54600, France
(e-mail: antoine.liutkus@inria.fr).
D. Fitzgerald is with the NIMBUS Centre, Cork Institute of Technology,

Cork, Ireland.
Z. Rafii and B. Pardo are with the Northwestern University, Evanston, IL

60208 USA.
L. Daudet is with the Institut Langevin, Paris Diderot University, Paris 75005,

France.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2014.2332434

undertaken to address this challenging task. Among them, we
can mention three different paradigms that have attracted much
of the attention of researchers in the field.
One of the first efficient approaches to source separation

is denoted Independent Components Analysis (ICA, see [2],
[1]). It performs signal separation through the assumptions
that the sources are all probabilistically independent and dis-
tributed with respect to a non-Gaussian distribution. Given
these assumptions, contrast features representative of both
non-Gaussianity and independence are maximized, leading to
the recovery of separated signals. The main issue with these
approaches is that they are hard to extend to underdetermined
source separation, i.e., when less mixtures than sources are
available. Furthermore, many signals of interest are usually
poorly modelled as independent and identically distributed
(i.i.d.), a common assumption in ICA.
A second set of techniques for source separation is grounded

in state-space modelling. Indeed, it can be expressed in terms
of an adaptive filtering problem where the hidden state of the
system is composed of the sources and where the observation
process leads to the resulting mixtures [3]–[5]. Source separa-
tion in this context can be performed through state-inference
techniques. The main issue with this approach is that the
sources can rarely be modelled as obeying linear dynamic
models. Meanwhile, tractable nonlinear adaptive filtering
is often restricted to very local dependencies. Furthermore,
the computational cost of the methods has hindered their
widespread use in practice. Still, some studies [6]–[8] have
demonstrated that a state-space model is appropriate to account
for the dynamics of audio spectra in many cases. Following
from this, nonnegative dynamical systems were recently in-
troduced [9] to perform efficient separation of nonnegative
sources defined through a state-space model.
Finally, a third approach, which is currently the dominating

paradigm for the underdetermined separation of waveforms, is
the use of generalizedWiener filtering [10]–[12] under Gaussian
assumptions [13]. In practice, it can be shown [14] that this ap-
proach reduces to decomposing the spectrograms of the mix-
tures into the spectrograms of the sources. The corresponding
waveforms are then easily recovered. Most related methods rely
on the idea that the sources are likely to exhibit some kind of
spectral redundancy. This can be efficiently captured through
dimension reduction methods like Nonnegative Matrix/Tensor
Factorizations (NMF/NTF, [15]–[18]).
In spite of their appealing tractability and their performance

on many signals, the aforementioned ideas often have limita-
tions. First, some sources like the human voice are hard tomodel
with a few fixed spectral templates. Studies such as [19], [18]
address this issue and introduce more sophisticated models, but
they may require a careful tuning in practice [20]. Second, these
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techniques typically assume that different sources are character-
ized by different sets of spectra, which may not be realistic in
many cases, like in a string quartet for instance.
In this study, we do not attempt to decompose the sources

as combinations of fixed patterns. Instead, we focus on their
regularities to identify them from the mixtures. To motivate
this, we can consider the case of musical signals. Audio sources
can exhibit extremely complex spectrograms that sometimes
cannot be modelled using block structures such as NTF. How-
ever, their local dynamics may be understood as obeying more
simple rules. Auditory Scene Analysis [21] demonstrates on
perceptual grounds that our ability to discriminate sources
within a mixture largely depends on local features such as
repetitivity, continuity or common fate. These dynamic fea-
tures do not depend on any particular spectral template, but
rather on local regularities concerning their evolution over
time and frequency. If several studies have already addressed
the problem of introducing regularities within the parameters
of block models [22], [16], [23], [9], only a few focused on
modelling the correlations within nonnegative sources [24]. In
any case, these techniques can for now only account for a small
number of correlations, thus strongly limiting their expressive
power.
We focus on the modelling and separation of signals which

are defined on arbitrary input spaces, meaning that the approach
is applicable to both 1D signals (e.g., audio time-series) and
multi-dimensional data. In order to model local dependencies
within a source, we assume that it can locally be approximated
by a parametric model such as a polynomial. If its values at some
locations are not directly observable from the data, they can be
estimated using its values at other locations through local re-
gression [25]–[28]. Usually, this local fitting is handled using
a sliding window of adjacent locations, yielding smooth esti-
mates. Instead, we introduce the general concept of a source-de-
pendent proximity kernel, that gives the proximity of any two lo-
cations to use for local fitting. This direct generalization permits
to account for signals that are not necessarily smooth, which is
often the case in practice.
If we observe a mixture and want to estimate the value of one

of the sources at some location, the method we describe assumes
that the contribution of all other sources will average out during
local regression and that separation can hence be performed in
an iterative manner. In practice, we introduce a variant of the
backfitting algorithm [29], which can use a different proximity
kernel for each source. This approach is flexible enough to take
prior knowledge about the dynamics of many kinds of signals
into account. In the context of audio processing, we show that it
encompasses a large number of recently proposed methods for
source separation [30]–[34], [18] and provides an efficient way
to devise new specific separation algorithms for sources that are
characterized by local features, rather than by a global additive
model such as NTF.
This text is organized as follows. First, we introduce kernel

local parametric models for the sources in Section II. Then, we
consider the case of mixtures of such sources in Section III
and present an algorithm for their separation that we call kernel
backfitting (KBF). In Section IV, we illustrate the effectiveness
of the approach for the separation of 1D mixtures contaminated

by strong impulsive noise. Finally, we discuss the application
of the framework to audio sources in Section V and show that
KAM is efficient for the separation of the vocal part in musical
signals.

II. KERNEL LOCAL PARAMETRIC MODELS

Throughout this paper, all signals are understood as functions
giving the value of the signal at any location . For example,

in the case of a time series, will be a time position or a sample
index, while is the corresponding value for the wave-
form. In another setting, for image or field measurements for
instance, may be a spatial location and the signal value
at that position. Such a formulation permits one to handle both
regularly and non-regularly sampled data in a principled way.
In this section, we present an approach to model the local dy-

namics of signals. Its principle is to locally approximate a signal
through a parametric model. For this purpose, it is necessary to
choose a parametric family of approximations but also to de-
fine the particular weighting function used for the local fitting.
This weighting function, called a proximity kernel, may not be
based on the standard Euclidean distance, but rather on some
knowledge concerning the signal. This kernel local regression
is an important building block of the separation procedure we
present in Section III.

A. Kernel Local Regression

Local regression [26], [28], [35] is a method that was initially
introduced for smoothing scatter plots. Formally, let denote
an arbitrary space called input space and let us assume that our
objective is to estimate a signal based on noisy
observations , where is a location and is
the observed value at that location. We write

as the set gathering the available measurements.
The first step in local parametric modelling is to assess a re-

lation between the signal we seek to estimate and the observa-
tions. Usually, each observation is assumed to be the sum of

with some white additive noise :

(1)

More generally, we will consider that the negative log-likeli-
hood of the observations given , also
called the model cost function in the following, is known:

(2)

This probabilistic formulation permits us to handle noise in
a more flexible manner than (1). By selecting the appropriate
probability density function, noise may be modeled as additive,
multiplicative, or some other relation. Throughout this paper,
we suppose that all observations are independent1.
The main idea of local parametric modelling, reminiscent of

Taylor series, is to consider that for a particular position ,
the signal can be locally approximated using a member

1Assuming the observations to be independent does not mean that no relation-
ship is to be expected between them. In the additive formulation (1) for instance,
it only means that the additive noises are independent.
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of some given parametric set of functions . In that case,
denotes the set of parameters defining the function . For
example, can be the set of all polynomials of a given order
and is then a particular set of coefficients. Finally, is
estimated as:

(3)

with local parameters chosen as:

(4)

where is a known nonnegative weight giving the
importance of having a good fit at for esti-
mating . The rationale behind the weight function in (4)
is that a good choice for is only required to be good lo-
cally. In the literature, having with some
is common, is mostly chosen as the set of linear functions

and as the squared error, leading
to the following cost function:

(5)

This is easily solved and leads to the estimate
. When is chosen as the class of constant functions

(having ), and as the squared error, (5) is solved by
the Nadaraya-Watson [36], [25] estimate:

(6)

which is essentially a weighted average of the observations
around . The parametric space and the penalty function
to use can strongly depend on the application.
The presentation above is slightly more general than what is

common in the literature. First, is often taken as Euclidean
equipped with a norm . Second, the weight
function that gives the proximity of to in (4)
is typically given in terms of their distance , justi-
fying the name local regression for the approach. Here, we pur-
posefully did not make these assumptions, because we allow
the value at some location to depend not necessarily
on its neighbors under the initial input metric, but rather on
neighbours under some arbitrary metric defined by a proximity
kernel . This further flexibility adds improved expres-
sive power.

B. Proximity Kernels

We refer to the weight function as a proximity
kernel. Its output must be non-negative and should increase as
the importance of using to estimate increases. It may
be implemented using a distance metric based on the location
of and . This leads to the kind of kernel typical in the local
regression literature. We begin with an example of such kernels
and then show how they can be generalized to significantly
increase the power of the approach.
1) An Example Proximity Kernel for Local Regression: Most

existing proximity kernels found in the local regres-

sion literature are stationary, i.e., functions of the distance
between their operands. This can for instance be written as:

(7)

where is called the bandwidth in this context and is chosen
using the measurements . is usually taken as a smoothly de-
creasing function2 of its argument like the tricube function [28]:

(8)

This kind of choice for is motivated by its intuitive
connection with the notion of proximity of from when has
an Euclidean topology.
2) Generalized Proximity Kernels: In the present study, we

show howmore general proximity kernels can be used to signif-
icantly reduce the size of , and thus the computational com-
plexity of the optimization problem (4). The main idea is to
choose a kernel that is not necessarily related to the
Euclidean distance between and in , but rather to
how much we expect the parametric approximations of at
and to share the same parameters. This way, estimation of the
parametric model to estimate in (4) may depend on
points that are “far” from in the Euclidean distance, but for
which is high.
Furthermore, even if a proximity kernel is a func-

tion of the locations and , it must be emphasized that it may
also depend on the data as is notably the case in robust local
regression [26]. In short, is a positive quantity, which
is high whenever we expect to share the same parameters at
and , in light of the data.
3) Example: Pseudo-Periodic Signals: In order to illustrate

these ideas, consider the example given in Fig. 1. We assume
and we suppose that is a function from to ,

which is known to be periodic with period , but not necessarily
smooth. To model , one can either pick as the set of all
positive trigonometric polynomials of period and choose a
global fitting strategy, or simply choose as the set of constant
functions and, for example, define if and only if

and 0 otherwise. This accounts for the
fact that for any is identical to with ,
because is periodic. Further if is assumed to be smooth, this
can easily be expressed with a proximity kernel that additionally
includes some proximity within each period [13]:

(9)

where is a parameter indicating for how many periods the
signal is known to be self-similar, while denotes the phase
distance required for two samples and to
become independent.
On Fig. 2, we show an example of kernel local regression

where the observations are the sum of a non-regularly
sampled locally-periodic signal with additive white Gaussian
noise of variance . is modelled as locally constant
with proximity kernel (9). Estimation is hence performed

2A function is usually called smooth if it is derivable. The more derivable,
the smoother it is.
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Fig. 1. Nonnegative periodic function of period 10. Since is periodic,
is identical to with for any , justifying the use of a locally
constant model with a periodic proximity kernel.

Fig. 2. Kernel local regression of a non-regularly sampled and pseudo-peri-
odic time-series mixed with white Gaussian noise of variance , using a
constant model with a pseudo-periodic proximity kernel (9). Estimation is done
using the Nadaraya-Watson estimate (6).

using the classical Nadaraya-Watson estimate (6) using this
non-conventional proximity kernel.
The above example is representative of the expressive power

of the proposed method. Instead of focusing on complex para-
metric spaces to globally model the signals, kernel local para-
metric modelling fits simpler models, but adapts the notion of
proximity for the estimation of based on some prior knowl-
edge about its dynamics. Put otherwise, when the proximity
kernel is high whenever the values of and
are similar and negligible otherwise, simple spaces of smooth
functions such as low order polynomials may be used in (4),
even if is not smooth with respect to the canonical topology

of . Above, has been simplified from the heavily parame-
terized set of nonnegative periodic functions to the trivial set of
constant functions.
4) Some Examples of Proximity Kernels: Many studies in the

literature [28], [35], [37]–[39] focus on the case of an Euclidean
input space with and the proximity kernel is
chosen [35], [39] as:

where is a symmetric positive definitematrix called the
bandwidth matrix, because it is the direct multivariate extension
of the bandwidth parameter of (7). is a smoothly decreasing
function of the norm of its argument like the tricube function
(8). The choice of is generally data dependent and a local
choice of has provided good edge-preserving estimates in
image processing [38], [39].
Other proximity kernels of interest include -nearest neigh-

bors ( -NN) kernels [27]. For a location such kernels are
defined as assigning a non-zero proximity value
to at most locations , called the nearest neighbours of
and denoted . Several cases of -NN kernels can be
found, such as the uniform -NN, that assigns the same prox-
imity to all nearest neighbours of . Some examples of -NN
kernels will be given in Sections IV and V.
Finally, we also mention kernels that are obtained through the

embedding of into a feature space of arbitrary dimen-
sion through:

(10)

The feature space is assumed to be equipped with a dot
product and the proximity kernel to use
can be chosen as:

(11)

Alternatively, the proximity kernel can be a -NN
kernel based on the distance in the feature space. This is no-
tably the case for the nonlocal meansmethod [40] for image de-
noising that computes the similarity of two locations
based on the similarity of the observations in their respective
neighborhoods. When the embedding (10) does not depend on
, proximity kernels (11) have the noticeable property of al-

ways being positive definite [41], [42], which is a key element in
many kernel methods. Conversely, any positive definite kernel
can be shown [42] to be the dot product of some feature space.
Thus, the embedding (10) may either involve the effective com-
putation of a set of features for each , or one may simply
choose any positive definite function as a proximity kernel, a
method which is known as the kernel trick in the specialized
literature.

C. Comparison With Bayesian Nonparametric Methods

The local regression framework can be seen as a particular
instance of the kernel method [42]. In our context, it has sev-
eral advantages compared to other regression frameworks such
as Gaussian Processes (GP, [41]). First, it allows the proximity
kernel to be a function of the observations , which is not
possible through a consistent Bayesian treatment based on GP
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Fig. 3. Two examples of sources modelled through local kernel models. (a)
Independent Gaussian samples with a varying mean. (b) Independent Gaussian
samples with a varying variance.

[43]. Second, it can easily permit non-negativity of the esti-
mates given nonnegativity of the observations. Indeed, provided

and , the simple Nadaraya-Watson
estimate (6) is for instance also nonnegative. This feature may
be important in some applications like audio processing as we
show in Section V. Third, contrary to the GP case, noise distri-
butions that are not Gaussian can easily be taken into account in
the local regression case. Finally, kernel local regression has the
important advantage of being computationally very efficient for
some choices of and . For example, computations involved
in the example displayed in Fig. 2 involve operations
whereas consistent regression using GP would have involved
the inversion of a covariance matrix, requiring
operations in the general case. Whenever has limited sup-
port, meaning that is nonzero for at most loca-
tions, complexity of local regression can drop down to .
Of course, this approach is not always the most appropriate

for signal modelling, because its performance strongly depends
on the assumption that the true underlying function can locally
be approximated as lying in some given—and known—para-
metric set, whichmay not be the case. On the contrary, fully non-
parametric Bayesian methods such as GP do not require such
an assumption. Still, there are many cases of practical interest
where a parametric model may locally be a very good fit, which
is for example demonstrated by the ubiquitous use of Taylor se-
ries in science.

III. KERNEL ADDITIVE MODELS

In this section, we assume that the measured signal, called the
mixture and written , is a noisy observation which depends on

functions called the sources. A common example is
the case of a sum of the sources. Our objective
becomes the estimation of all sources and thus to achieve
source separation.

The particularity of the approach we propose is that each
source is modelled locally using a kernel local parametric
model as defined above, with its own parametric family
and proximity kernel3 . As we will illustrate in Sections IV
and V, this feature is central and permits the combination of dif-
ferent source separation methods in a principled way.

A. Formalization

Let be a signal called the mixture, defined on an arbitrary
input space and taking values in , which means that for all

is a complex vector. The mixture depends on
underlying signals called the sources. Each source is also
a function from to . We assume that is observed at
locations, yielding the observed data .
The first step in Kernel Additive Modelling (KAM) is to

model the source signals. Formally, for a source , all samples
are assumed independent and their distribution is driven

by some location-dependent hyperparameters. To illustrate
this, consider the examples given in Fig. 3. In Fig. 3(a), the
source samples have a slowly varying mean. In Fig. 3(b), they
have a slowly varying variance. In both cases, their distribution
depends on a slowly varying latent variable. Other parameters
may also be provided, such as the variance of all samples in
Fig. 3(a).
In the general case, all samples are assumed indepen-

dent and their likelihood is known and given by the source cost
function4:

(12)

where is a set of source parameters that identifies which
distribution to use. It is split in two parts:

(13)

Among all parameters, is called a latent explanatory func-
tion and is the one that undergoes local modelling, while
gathers all other parameters. For instance, the source cost func-
tion for Fig. 3(a) corresponds to a Gaussian distribution with
mean and variance and is thus

. As such, model (12) is classical and simply
assesses the relation between source signals and some param-
eters of their distributions.
The second and most noticeable step in KAM is to model the

latent explanatory functions . In the literature, it is common to
assume that they are well described as a member of some

parametric family of functions, such as in variance model-
ling with NTF [44], [18]. Here, we drop this global assumption
and rather focus on a localmodel. Each latent explanatory func-
tion is approximated in the vicinity of location as:

(14)

3For conciseness, we drop the subscript for the proximity kernels, but it
must be emphasized that every proximity kernel considered may depend on the
data.
4In the following, each notation denotes a cost function which depends

on the location considered. For ease of notation, this dependence on is not
made explicit.
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where is a parametric family of functions and some
location-dependent parameters. If we assume as in Section II
that noisy observations of are available, the local
parameters in (14) are chosen as:

(15)

where is the proximity kernel of source as defined above in
Section II.B and is a known model cost function
for source . It is the penalty of choosing when its
noisy observation is .
The final step is to assess the relation between the mixture ,

the sources and their parameters . This is
done by specifying the separation cost function, , which
describes our knowledge on how to perform a good separation
given some set of parameters. If we adopt a probabilistic per-
spective, it may be understood as the negative log-likelihood of
the sources given all their parameters and the mixture:

(16)

In that case, it may be derived by combining the
source cost function (12) with a known mixing model

through Bayes’ theorem. However,
some studies have demonstrated that sticking to that proba-
bilistic interpretation may not always be advantageous and
that user-defined separation cost functions may yield very
good results [45]. For that reason, we retain an optimization
perspective and simply assume is given. Two different
examples are given in Sections IV and V. Furthermore, this
broad definition (16) permits handling more complex mixing
scenarios than simple sums, like a product of sources or
non-linear mixing.
With the source, model and separation cost functions in hand,

source separation amounts to computing the estimates
and that jointly minimize all cost functions (12), (15) and
(16).Whereas this may seem daunting to solve in full generality,
we now adapt the ideas of backfitting in order to perform the
estimation iteratively.

B. Kernel Backfitting Algorithm

The problem above has been extensively studied. In partic-
ular, if and in the additive case , if we
assume that the sources coincide with the latent explanatory
variables5, having and that each source only de-
pends on the th coordinate of , this problem has been exten-
sively studied under the name of Generalized Additive Models
(GAM, [29], [46]). The more general case where each function

depends on a particular projection of the input
has been considered by FRIEDMAN et al. as projection pursuit
regression (PPR, [47]).
In this work, we propose to adapt the GAM and PPR models

so that they can be used for source separation without their
original assumptions that with each depending

5For instance, we have when in Fig. 3(a).

on the projection of into the real line. We instead only as-
sume that the mixing, source and model cost functions as de-
fined above are given, alongwith the parametric families of
functions and proximity kernels . Even if this is a generaliza-
tion of both approaches, the separation algorithm we present is
strongly inspired by the original backfitting procedure described
in [47] and further studied in [29], [46] for the estimation of
GAMs. Logically, we propose the term kernel backfitting for
this algorithm.
Intuitively, the algorithm goes as follows. For a set of

source estimates and for each location , we compute the
parameters that minimize the sources cost functions

without taking the model cost function into account.
This leads to a set of parameters , where is
a noisy observation of the true latent explanatory function .
Then, new estimates are computed by kernel-smoothing
through kernel local regression as in Section II.A, using

the model cost function (15). Finally, with this new set of
parameters , new sources estimates are computed
by minimizing the separation cost function (16). The process
then repeats using those new source estimates, until a stopping
criterion is reached, such as iteration number or the difference
between new and old estimates. The different steps are outlined
in algorithm 1.

Algorithm 1: Kernel Backfitting (KBF). General Formulation.

1) Input:
• Mixture data
• Number of source
• Sources (12), model (15) and separation (16) cost
functions

• Kernel models
• Stopping criterion

2) Initialization
a)

3) Parameters update step
a)

b)
where is estimated as in (15)

c)
4) Separation step

a)

5) If stopping criterion is not met, go to step 3
6) Output: sources and parameter estimates

Apart from its similarity with the backfitting procedure, this
algorithm also coincides in some cases with the Expectation-
Maximization approach (EM [48]) undertaken for underdeter-
mined source separation, e.g., in [17], [12], [18]. This happens
when the proximity kernels for the sources are uniformly one

, leading to a global fitting of in step 3b,
and when the model cost function is chosen in a probabilisti-
cally coherent way with the source and separation models. For
instance, it has been argued in [49], [44], [12], [14], [13], [18]
that the Itakura-Saito (IS) divergence should be chosen as the
model cost function (15) if the parameters are to be used for
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variance modelling of Gaussian random variables. The corre-
sponding source and separation distributions are derived conse-
quently. However, many studies have demonstrated that the use
of other model cost functions such as the Kullback-Leibler (KL)
divergence may provide better performance in the same context
[50], [51]. This is our motivation in using user definable cost
functions for the sources, models and separation steps. As we
show later, this can be important in the case of strong impulsive
noise in the measurements.
Finally, the KBF algorithm is close in spirit to the Denoising

Source Separation framework (DSS [52]), which is limited to
overdetermined source separation. Indeed, it includes a local
smoothing of the latent functions in step 3b to yield the up-
dated estimates . Even if this smoothing actually includes ar-
bitrary proximity kernels as defined in Section II-A, the main
idea remains the same: prior knowledge is used within the sepa-
ration algorithm to improve estimates through some kind of pro-
cedural denoising operation, which permits to model sources. In
a sense, the KBF algorithm 1 may be considered as a counter-
part for DSS in the case of underdetermined mixtures.

IV. TOY EXAMPLE : ROBUST SOURCE SEPARATION OF
LOCALLY CONSTANT SOURCES

In this section, we study the separation of synthetic signals
mixed with impulsive noise and show that KAM gives good
performance in this context, unlike linear methods such as GP
[13]. MATLAB code for these toy examples is available at the
web page dedicated to this paper6

A. KAM Formulation

To illustrate the use of KAM for source separation, assume
that the observation is composed of real measurements

of the mixture at locations . They are a
simple sum of sources

(17)

The first step in KAM is to model each source. We will assume
for now that all samples from each source are indepen-
dent and are Gaussian distributed withmean and variance
as in Fig. 3(a):

(18)

Based on the observation of a single sample , the max-
imum likelihood estimate of the mean , whichmin-
imizes the source cost function (12) is the trivial

(19)

to be used in KBF at step 3a.
The second element required for KBF is to set a kernel

local parametric model to each latent mean function . This is
achieved by specifying a parametric family of functions,
a proximity kernel and a model cost function . First,
is simply assumed locally constant, so that (14) collapses

6www.loria.fr/~aliutkus/kam/

to . Second, we choose a nearest neighbours
proximity kernel as described in Section II.B. Its particular
shape depends on the source and is described below. Finally,
the model cost function is arbitrarily chosen as the absolute
deviation:

(20)

This choice is motivated by the fact that is likely to be
a very poor estimate of , because it is based on a single
observation. The absolute deviation is widely known to be more
robust to the presence of outliers in the data. It is readily shown
[53] that minimization of the binary-weighted model cost func-
tion (20) is achieved by the median value of ,
denoted:

(21)

to be used in KBF at step 3b.
Finally, the last step in KAM is to specify the separation cost

function. Provided all latent mean functions are known, the
posterior distribution of the sources given
the mixture is Gaussian. Their a posteriori mean thus minimizes
the separation cost function and may hence be used during KBF
at step 4a:

(22)

Using expressions (19), (21) and (22) in the corresponding
steps of the KBF algorithm, separation of all sources and esti-
mation of the latent mean functions can be achieved. If all
proximity kernels have limited support , complexity of
the KBF algorithm is .

B. GP Formulation

The same problem can be handled using Gaussian Processes
(GP) for source separation [13]. Combining (17) and (18), we
get:

(23)

where all are independent and identically distributed (i.i.d.)
with respect to a Gaussian distribution. For reasons that will
become clear soon, their common variance is rewritten as
, where is called the noise power. Provided each source

is modelled as a GP with known mean and covariance functions
(see [41], [13]), their separation is readily achieved as a partic-
ular case of GP regression:

(24)

where denotes conjugation, is a known covariance
matrix of and is the identity ma-
trix. In the GP framework, prior information about each source
comes as a particular choice for the covariance function, which
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Fig. 4. Independent and identically distributed symmetric and centered
-stable noise with power 1 and different . Plots are semi-logarithmic. The
case is Gaussian and features strong outliers.

encodes our knowledge about the regularities of and permits
the building of . As demonstrated for instance in [13], in
the case of regularly sampled signals and stationary covariance
functions, separation (24) may be achieved in op-
erations. Many techniques for underdetermined source separa-
tion can be understood as such GP regression [13].

C. Results and Discussion

In order to compare the KAM and GP frameworks for source
separation, we synthesize two latent explanatory functions
and as realizations of two GP whose covariance functions
are known. In other words, the covariance matrices and
in (24) are assumed known, which is the ideal case for the GP
approach. is then built as in (23), and separation is performed
with both KAM and GP. The metric considered for performance
evaluation is the signal to error ratio

which is higher for better separation. 50 independent trials of
this experiment are performed and results are reported as the
median and interquartile range of all .
Our objective in this toy-study is to test the robustness of

KAM and GP to violations of the Gaussian assumption for the
additive noise . More precisely, we check for their perfor-
mance when some outliers are present among the . In prac-
tice, instead of taking all as i.i.d. Gaussian, they are drawn
from a symmetric -stable distribution of power . The family
of -stable distributions includes Gaussian , Cauchy

and Levy distributions as special cases.
Their main characteristic is that a sum of -stable random vari-
ables remains an -stable random variable. Their stability pa-
rameter controls the tail of the distribution, (
leads to heavy tails) and its power controls its spread. In
Fig. 4, we show independent and identically distributed samples
from such symmetric -stable distributions. They have been
largely studied in the field of nonlinear signal processing be-
cause they are good models for impulsive data, yielding esti-
mates that are robust to outliers (see [53] for a review).
For many different values of between and ,

we perform separation with both KAM and GP as described
above. Of course, the assumptions underlying GP separation do
not hold except for . Still, estimation can nonetheless be
performed as in (24), where is used instead of the variance

Fig. 5. Performance of separation under impulsive -stable noise of unit power
as a function of for both GP and KAM separation algorithms. 50 independent
trials are considered for each . Whereas KAM is robust to impulsive noise, the
performance of GP separation is good for only, i.e., for non-impulsive
noise. IQR stands for InterQuartile Range.

Fig. 6. Median signal to error ratio for KAM separation of periodic signals
from -stable noise with , as a function of the number of iterations, for
10 independent trials. Performance plateaus after 5 iterations.

of noise. As can be noticed, none of the KAM updates (19), (21)
and (22) involve the noise variance and all can hence be used as
is. Periodic kernels are chosen for the fitting of , with the true
periods assumed known as in Fig. 1. For GP, the true covariance
matrices are used for separation, which is a stronger prior
information than the periods only.
Results are displayed in Fig. 5 and clearly show that while

KAM provides good performance for all , the scores
obtained by GP rapidly drop below . Remarkably, even
for the Gaussian case , GP separation is not better than
KAM. We can conclude that GP cannot handle outliers as well
as KAM. This is an expected result, since (24) boils down to a
linear combination of observations. On the contrary, separation
using the KBF algorithm involves a robust estimation of at
step 3b, which permits excellent performance even in case of
-stable noise. On Fig. 6, we show the performance of KAM as
a function of the number of iterations for this example. As can
be seen, performance plateaus in about 5 iterations.
Finally, we tested KAM for the separation of step-like signals

from periodic oscillations under stable noise. Some illustrative
results are given in Fig. 7. Remarkably, it is impossible to use a
GPwith a stationary covariance function tomodel such step-like
signals. In KAM, the only difference from the scenario above is
the use of a classical proximity kernel .
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Fig. 7. Example of kernel additive modelling. The noisy observed signal (top)
is the sum of two sources (middle, bottom) and very adverse Cauchy noise
. KAM permits the separation of step-like signals, for which no stationary GP

model is available.

This leads to a median filtering of in the corresponding KBF
step 3b. Separation with KAM is still of linear complexity and
done in a few seconds using a standard laptop computer for

observations and 10 iterations of KBF.

V. APPLICATION : AUDIO SOURCE SEPARATION

In this section, we illustrate how to use KAM for a particular
real-world scenario: the separation of music recordings. After
some theoretical background on audio source separation, we
show how to instantiate the KAM framework to devise efficient
audio separation methods.

A. Separation of Gaussian Processes : Principles

The observed mixture consists of audio waveforms denoted
. Each one of them is called a channel of the mixture. In music
processing, the case of stereophonic mixtures is
common. The mixture is assumed to be the sum of unknown
signals called sources, that are also multichannel
waveforms:

(25)

The Short Term Fourier Transforms (STFTs) of the sources
and of the mixture are written and , respectively.
They all are tensors, where is the number of
frequency bins and the number of frames. is the
total number of Time-Frequency (TF) bins. and

are vectors that gather the value of the STFT of all channels
(e.g., left and right) of and at TF bin . We denote
as a set of all TF bins : .
In the monophonic case , it can be shown that under

local stationarity assumptions [13], all TF bins of the
STFT are independent and normally distributed. In the multi-
channel case, a popular related model is the Local Gaussian
Model [12]. It assumes that all vectors are independent,
each one of them being distributed with respect to a multivariate
centered complex Gaussian distribution:

(26)

where is the power spectral density (PSD)
of source at TF bin . It is a nonnegative scalar that
corresponds to the energy of source at TF bin . The
spatial covariance matrix is a positive semidefi-
nite matrix that encodes the covariance between the different
channels of at frequency . As shown in [12], this model
generalizes the popular linear instantaneous and convolutive
cases [1] and permits more flexibility in the modelling of
the spatial dispersion of a source. As can be seen, the source
model (26) is a multichannel extension of the heteroscedastic
model depicted in Fig. 3(b), which includes both a latent
explanatory function and other parameters , gathered in

. Being the sum of independent
random Gaussian vectors , the mixture is itself
distributed as:

(27)

If the parameters are known or estimated as
and , the Minimum Mean-Squared Error (MMSE) estimates
of the STFTs of the sources are obtained via generalized spa-

tial Wiener filtering [10], [11], [13], [12]:

(28)

The waveforms of the sources in the time domain are easily
recovered by inverse STFTs.

B. Locally Constant Models for Audio Sources

Setting this in the KAMmethodology, we see that (26) readily
provides a source cost function while (28) permits minimiza-
tion of the separation cost function. We now choose a kernel
local parametric model for the PSD of the sources, to be used
in the KBF algorithm at step 3b. We model all PSDs as lo-
cally constant and use -NN proximity kernels as presented in
Section II.B. In other words, for each TF bin , we
specify a set of neighbours , for which the PSD
has a value close to

Some examples of such binary proximity kernels are given
below in Section V.C.
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With the proximity kernels in hand, the only missing part for
the use of KAM is the definition of the model cost function .
Just like in the toy example above in Section IV, we choose the
absolute deviation (20), because it is known to be less sensitive
to outliers in the estimates , which are numerous during con-
vergence. Indeed, is computed using observations only
and is likely to be contaminated with interferences from other
sources. This leads to the following cost function to be mini-
mized at KBF step 3b:

(29)

which is achieved by:

(30)

The application of the general KBF algorithm 1 to this audio
setup is summarized in algorithm 2, where denotes conjugate
transpose and is the trace operator. Steps 4b and 4c of
this algorithm correspond to maximum likelihood estimation of
and given . The interested reader is referred to [12],

[18] for further details. A noticeable feature of this algorithm
is that all sources can be handled in parallel during both steps
3 and 4, permitting computationally efficient implementations.
On a current desktop computer, typical total computing time
is about 5 times slower than real time and the computational
complexity of KBF scales linearly with track length and number
of iterations.

Algorithm 2: Kernel Backfitting for Multichannel Audio
Source Separation With Locally Constant Spectrogram Models
and -NN Proximity Kernels

1) Input:
• Mixture STFT
• Neighborhoods as in Fig. 8.
• Number of iterations

2) Initialization
•
• identity matrix

3) Compute estimates of all sources using (28)
4) For each source :

a)
b)

c)
d)

5) For another iteration, go to step 3
6) Output:
sources PSDs and spatial covariance matrices
to use for filtering (28).

C. Examples of Kernels for Audio Sources

Many methods for audio source separation can be understood
as instances of the framework presented above, including the
many variants of REPET [31]–[33], [54], [34] or the median
filtering approach presented in [30]. From the point of view of

Fig. 8. Some examples of -nearest neighbors proximity kernels for modelling
audio sources. (a) vertical, for percussive elements; (b) horizontal, for stable
harmonic elements; (c) periodic, for repetitive elements; (d) cross-like, for
smoothly varying power spectral densities such as vocals.

KAM, those methods simply correspond to different choices for
the proximity kernels of the sources.
As highlighted in [32], most of those studies rely on ad-hoc

filtering approaches and are suboptimal in light of the develop-
ments above. In particular, when several local source models are
provided as in [30], the estimation is performed independently
for each source and no special care is taken in correctly model-
ling the observation as themixture of the sources. As such, these
techniques can be understood as performing only one iteration
of the kernel backfitting procedure described in algorithm 2.
In this section, we illustrate the capacity of KAM to combine

completely different approaches to source separation which use
different assumptions. To this end, we present four families of
proximity kernels to use with algorithm 2.
1) Models for Percussive and Harmonic Sounds: In musical

signals, percussive elements are known to be self-similar along
the frequency axis, while harmonic steady sounds are self-sim-
ilar along time [30]. This prior knowledge can be exploited in
the KAM framework by choosing -NN proximity kernels that
are either vertical or horizontal, as depicted in Fig. 8(a) and (b)
respectively. Using them in algorithm 2 leads to a generalization
of the procedure presented in [30] that allows for multichannel
mixtures.
2) Models for Repetitive Patterns: The musical accompani-

ment of a song may often be considered as locally repetitive. For
instance, it may contain drum loops or guitar riffs. This has al-
ready been exploited for audio source separation in the REPET
approach [31], [32] and is reminiscent of pioneering work by
CLEVELAND et al. [55] on the separation of seasonal and trend
components in time series. Here, we show that REPET fits well
within the KAM framework and can be extended to account for
superpositions of different repetitive patterns at different time
scales.
Formally, the PSD of a repeating source is assumed to

be locally periodic along time with period , which means
that ought to be similar to with

. Following the discussion in Section II.B3, this can
be accounted for by choosing , as de-
picted in Fig. 8(c) for .
Then, the repeating part of a song can be modelled as the sum

of such spectrally pseudo-periodic signals. This formulation
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Fig. 9. scores for the separation of vocals over 50 full-length tracks,
including those of the proposed KAM setup. Higher is better.

encompasses the REPET model discussed in [31]–[33] that is
limited to 1 repeating pattern only.
For the purpose of estimating the periods of all repeating

sources, we use a peak detection of the average autocorrelation
for all frequency bands of the spectrogram of the mixture. More
sophisticated approaches may be considered to allow for non-
integer periods.
3) Weak Models for Natural Sounds: When devising models

for the PSD of a voice signal, we are faced with the extraor-
dinary diversity of sounds it may produce. In the past, many
studies exploited the fact that sung melodies are often composed
of harmonic parts obeying the classical source-filter model for
phonation, including the renowned IMMmodel [19], [20]. Even
if it often obtains good performance, this approach has issues
with the separation of consonants and breathy voices, that do
not fit well the harmonic model.
In this study, natural sounds such as the human voice are

simply assumed to have smooth variations in their PSD, along
time or along frequency, e.g., during voiced or voiceless parts,
respectively. Since this assumption is rather loose and is valid
for a large variety of signals, we call it a weak model for nat-
ural sounds. Formally, such a model considers that and

are close whenever and are close either along time or
frequency. This is achieved by choosing the cross-like kernel
depicted in Fig. 8(d).
4) NMFModel Within KAM: Even if the KAM approach en-

compasses a large number of recent methods for source separa-
tion [30]–[34], it can also be used to combine such approaches
with a more classical NMF model. Some audio sources are in-
deed well explained as the activation over time of fixed and
global patterns. To this purpose, the PSD of source may
be modelled as:

(31)

where and are parameters to be fitted globally. This is
readily achieved in the KAM framework by setting .
During step 4d of the KBF algorithm 2, median filtering is then

simply replaced for such a source by a global fitting of by the
NMF model (31) through standard procedures. The model cost
function to use may be any divergence seen fit, such as IS
or KL. Remarkably, if all sources are modelled this way and if
the IS divergence is chosen, algorithm 2 coincides with the EM
procedure described, e.g., in [18], [12].

D. Voice Extraction Performance

In our experiments, we processed 50 full-length stereo tracks
from the ccMixter7 database, featuring many different musical
genres. For each track, the accompaniment was modelled as
a sum of repeating patterns along with a 2-seconds
steady harmonic source. Vocals were modelled using a cross-
like kernel of height 15 Hz and width 20 ms. Framelength is set
to 90 ms, with 80% overlap.
Kernel backfitting as described in algorithm 2 was applied

for 6 iterations. A MATLAB implementation of KAM may be
found in the companion webpage of this paper8, along with the
audio database and separation examples. We also performed
vocal separation on these 50 full-length tracks with 3 techniques
from the state of the art: IMM [19], RPCA [56] and REPETsim
[54], [34]. Since RPCA and REPETsim do not handle stereo sig-
nals explicitly, they were applied on left and right channels in-
dependently. Once the tracks have been separated, they are split
into 30 s excerpts and performance is evaluated on the 350 re-
sulting excerpts. The metric considered is the Source to Distor-
tion Ratio (SDR) computed with the BSSeval toolkit [57], which
is given in dB. In order to normalize separation results along the
different tracks, is given instead of SDR and indicates the
loss in performance as compared to the soft-mask oracle [58]. In
other words, dB indicates that separation is as good
as oracle Wiener filtering and the higher is, the better
the separation. Boxplots of the results are displayed on Fig. 9.
As can be noticed, performance of the proposed KAM setup
for vocal separation beats other competing methods by approxi-
mately 3 dB. A multiple comparison test using a non-parametric
Kruskal-Wallis analysis of variance, at the 5% confidence in-
terval level, shows that KAM is significantly better in terms of

than all other methods. In any case, these scores only hold
for the choice of proximity kernels we made in this voice/music
separation task. Indeed, KAM may be used in many other set-
tings or yield improved performance with more adequate prox-
imity kernels and careful tuning.

VI. CONCLUSION

In this paper, we have proposed a new framework for source
separation, where each source is modelled both locally and
parametrically. Each source taken at some location is assumed
to be correctly predicted using its values at other locations
nearby. In this case, estimation can be performed using local
regression.
However, not all sources are well understood by stating that

neighboring locations necessarily induce close values. This
would only be true for smooth signals, which are not a good
fit to the data in many cases. Instead, there may be a more
sophisticated way to decide whether two locations give similar

7www.ccmixter.org.
8www.loria.fr/aliutkus/kam/.
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values. More generally, we introduced proximity kernels, which
give the proximity of two points from the perspective of a
source model. There are several ways of building such kernels
and many methods from the literature come as special cases of
this framework.
Separation of a mixture in this context can be performed using

a variant of the backfitting algorithm, termed kernel backfitting,
for which topological distance is replaced by source-specific
proximity kernels. We showed how this Kernel Additive Mod-
elling approach permits separation of sources that are defined
through different proximity kernels.
A first feature of this method is that it is flexible enough to

account for the dynamics of many kinds of signals and we in-
deed showed that it comes as a unifying framework for many
state-of-the-art methods for source separation. Second, it yields
an easy and principled way to create and combine kernel models
in order to build sophisticated mixture models. Finally, the cor-
responding algorithms are very easy to implement in some cases
and provide good performance, as demonstrated in our evalua-
tions.
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