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Sliding Discrete Fourier Transform with Kernel Windowing

The sliding discrete Fourier transform 
(SDFT) is an efficient method for 
computing the Npoint DFT of a 

given signal starting at a given sample 
from the Npoint DFT of the same sig
nal start ing at the previous sam ple [1]. 
However, the SDFT does not allow the 
use of a window function, generally incor
porated in the computation of the DFT to 
reduce spectral leakage, as it would break 
its sliding property. This article will show 
how windowing can be included in the 
SDFT by using a kernel derived from the 
window function, while keeping the pro
cess computationally efficient. In addi
tion, this approach allows for turning other 
transforms, such as the modified discrete 
cosine transform (MDCT), into efficient 
sliding versions of themselves.

Relevance
The SDFT can be used to perform spectral 
analysis on successive samples in a signal 
without having to compute a new DFT 
from scratch every time, provided that win
dowing can be incorporated into the com
putation of the DFTs without harm ing the 
efficiency of the method. A notable appli
cation of the SDFT with windowing can 
then be framing detection in audio signals 
that have undergone lossy compression in 
the context of audio compression identifi
cation [2]. A lossy compression algorithm 
will typically in troduce traces of compres
sion in the signal being encoded, which can 
become visible in the timefrequency rep
resentation when using the same param
eters and framing that were used for the 
encoding. Therefore, the parameters and 
framing can be recovered by computing 
timefrequency representations at succes
sive samples in the signal and identify
ing when traces of compression become 

visible. This demanding process can be 
translated into an efficient one by using the 
SDFT with kernel windowing.

Prerequisites
Basic knowledge of digital signal process
ing is required to understand this arti
cle, particularly concepts such as the DFT, 
windowing, and general spectral analysis. 
More details about the SDFT and lossy 
audio compression identification can also 
be found in [1] and [2], respectively.

Problem statement and solution

Problem statement 
The SDFT allows for the computation 
of the Npoint DFT of a signal from the 
Npoint DFT of the same signal starting 
one sample earlier, in a sense by sliding a 
rectangular window of length N one sample 
forward. The SDFT essentially relies on the 
shift theorem, which states that multiplying 
a signal by a linear phase is equivalent to a 
circular shift in the corresponding DFT.

Equation (1), shown at the bottom of 
the page, shows the derivation of ,X( )i  
the Npoint DFT of signal x  starting at 
sample ,i  from ,X( )i 1-  the Npoint DFT 
of x  starting at ,i 1-  a process hence 
known as SDFT.

The SDFT thus only requires two N 
additions and N multiplications, leading 

to a linear time complexity of ( ),NO  
while the full and direct computation 
of the DFT and the fast Fourier trans
form (FFT) are ( )NO 2  and ( ),logN NO  
respectively.

Transforms such as the DFT typically 
use a window function in their compu
tation to reduce spectral leakage and 
enhance spectral analysis. However, the 
SDFT does not allow the incorporation 
of a window function as it will break the 
process shown in (1). One solution would 
be to perform the windowing in the 
frequency domain, i.e., on the derived 
DFT through convolution. A practical 
window function for that matter could be 
the Hanning window, as the correspond
ing windowing in the frequency domain 
equals a simple threepoint convolution 
[1]. Other window functions, however, 
may not be as practical, as the correspond
ing convolutions may involve many more 
operations, which will ultimately hurt the 
computational efficiency of the SDFT. 
Therefore, the problem is to incorporate 
any window function into the computa
tion of the DFTs in an efficient manner 
without breaking the SDFT process.

Solution: Kernel windowing
The idea of performing the windowing 
in the frequency domain can still be ex  
ploited by reformulating the convolution  
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as a multiplication by a kernel that can 
be derived from any window function. 
Such a kernel will be independent from 
the signal to be processed and only 
need to be computed once. It will typi
cally have a very small number of values 
that would be significant, which means 
that most of the values can then be ig 
nored. This would lead to a very sparse 
kernel, which can then be applied to the 
DFT of the signal, producing results vir
tually equivalent to the DFT of the same 
signal modified by the corresponding 
window function while preserving the 
computational efficiency of the SDFT.

The constantQ transform (CQT) is a 
transform with a logarithmic frequency 
resolution that was proposed as a more 
adapted alternative to the FT for analyz
ing music signals [3]. A fast algorithm 
was proposed soon after, which translat
ed the slow computation of the CQT into 
the multiplication of a DFT, which can 
be efficiently computed using the FFT, 
and a kernel, which is computed once 
beforehand and typically very sparse 
[4]. The idea was to use Parseval’s theo
rem to turn the direct computation in 
the time domain into a multiplication 
between a DFT and a kernel in the fre
quency domain, essentially demonstrat
ing the property of energy conversation 
between the time and the frequency 
domains [5].

Parseval’s theorem is recalled in (2). 
The value X is the Npoint DFT of x and 
xr  represents the complex conjugate of x
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Following a similar idea, we propose 
the use of Parseval’s theorem to trans
late the DFT of a windowed signal into 
the DFT of the signal, multiplied by a 
kernel that is derived from the corre
sponding window function: a multipli
cation that will happen after the SDFT 
process. Unlike in the fast CQT case, 
the purpose here is not to speed up the 
computation of the transform by taking 
advantage of the efficiency of the FFT 
algorithm in conjunction with the use of 
sparse kernel but to extract the window
ing operation from the DFT computa
tion so that the SDFT process shown in 
(1) still holds.

Equation (3), shown at the bottom 
of the page, illustrates the computation 
of ,X( )i  the Npoint DFT of the signal 
x starting at sample i and modified by 
the window function w, from ,X( )i 1-  the 
Npoint DFT of x starting at i 1-  with
out windowing, multiplied by the kernel 
K, which is derived from w.

As we can see in (3), the kernel is com
pletely independent from the signal; there
fore, it only needs to be computed once, 
before the SDFT process. Furthermore, 
given the nature of such kernel, typically 
only a very small number of its values will 
be significant, which means that most of 
the values can then be 
zeroed, given some 
threshold, leading to 
a very sparse kernel. 
The multiplication of 
the derived DFT by 
such kernel will thus 
only involve few more 
operations, keeping the 
whole process com
putationally efficient.

Figure 1 shows 
the kernels derived 
from some common window functions, 
i.e., Hanning, Blackman, triangular, 
Gaussian, Parzen, and Kaiser windows. 
As we can see, the Hanning window 
kernel shows only three nonzero values 
per row, confirming that the correspond
ing windowing in the frequency domain 
equals a simple threepoint convolution, 
while the Blackman window kernel shows 
five nonzero values per row. Both those 
windows are actually special cases of the 

generalized cosine window whose cor
responding windowing in the frequency 
domain equals convolutions with typically 
only few points. Unlike the Hanning and 
Blackman window kernels, the triangular, 
Parzen, Gaussian, and Kaiser window 
kernels show additional nonzero values 
around their main diagonal, suggesting 
that the corresponding windowings in 
the frequency domain equal convolutions 
with many more points. However, most 
of those nonzero values have very small 
magnitudes ( . )0 01%  and could then be 
ignored without significantly affecting 
the actual windowing process. By using 

an appropriate thresh
old, those kernels can 
therefore be made very 
sparse with only a few 
meaningful values per 
row in the same man
ner as in the fast CQT 
case [4].

As proposed in [4], 
we computed for each 
of those kernels the 
error in keeping the 
values greater than a 

chosen threshold by dividing the sum of 
the magnitudes of the values after thresh
olding by the sum of the magnitudes 
of all the values before thresholding. 
A threshold of 0.01 will thus give very 
small errors of 0.049, 0.009, 0.020, and 
0.015, for the triangular, Parzen, Gauss
ian, and Kaiser window kernels, respec
tively, when derived for an Npoint DFT 
with , .N 2 048=  With such a threshold, 
the first three kernels will then only have  
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A notable application of 
the SDFT with windowing 
can then be framing 
detection in audio signals 
that have undergone 
lossy compression 
in the context of 
audio compression 
identification.
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five nonzero values per row, while the 
latter one will have three nonzero values 
per row. This shows that only a very small 
number of values is actually significant 
in such kernels. The multiplication of 
the DFT by those very sparse kernels 
will then only involve KN multiplica
tions and KN additions, with K 3=  or 5, 
barely affecting the computational effi
ciency of the SDFT, still maintaining a 
linear complexity of ( ),NO  and producing 
results virtually equivalent to taking the 
DFT of the signal modified by the corre
sponding window functions.

Computational examples 

Framing detection  
and lossy audio coding
The SDFT with kernel windowing can be 
particularly useful for fast framing detec
tion in the context of audio compres
sion identification. Audio compression 
identification is the recovery of infor
mation regarding the data compression 
that an audio signal has undergone. In 
particular, the recovery of the parameters 
and framing used at the timefrequency 
decomposition stage of the encoding could 

allow for identifying the coding format or 
detecting alterations in audio signals that 
have undergone lossy compression [2], 
[6]–[9]. Lossy compression algorithms 
typically introduce traces of compres
sion in the audio signal being encoded 
in the form of timefrequency coefficients 
quantized to zeros, which can become vis
ible when using the same parameters and 
framing that were used for the encoding. 
One approach to identify if and when 
lossy compression was used would then be 
to compute the timefrequency represen
tation at successive samples in the audio 
signal and search for traces of compres
sion every time, given a set of parameters 
associated with a known coding format, 
such as timefrequency transform, win
dow length, and window function, a pro
cess also known as framing detection.

Lossy audio coding formats, per
haps the most popular ones being MP3, 
Advanced Audio Coding (AAC), AC3, 
Vorbis, and Windows Media Audio 
(WMA), are widely used for storage (e.g., 
in music and video files) or transmission 
(e.g., in radio and television broadcasting). 
Compression algorithms that can encode to 
such formats first transform the audio sig

nal into a timefrequency representation, 
derive a psychoacoustic model to locate 
regions of perceptually less significance, 
then quantize the data given the psycho
acoustic model, and, finally, convert it into 
a bitstream. The transform used at the time
frequency decomposition stage is typical  ly 
based on the MDCT, and a variety of win
dow lengths and window functions can be 
used depending on the coding format. In 
particular, specialized window functions 
such as the sine, slope, and Kaiser–Bessel
derived (KBD) windows, are generally 
required for the MDCT to be invertible. 
For more information about lossy audio 
coding, see [10]. The computation of the 
MDCT without windowing is
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Sliding MDCT with kernel windowing 
In this context, performing framing detec
tion for audio compression identification 
would involve computing an MDCT for 
every set of window length and window 
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Figure 1. The kernels derived from the (a) Hanning, (b) Blackman, (c) triangular, (d) Parzen, (e) Gaussian (with . )2 5a = , and (f) Kaiser (with . )0 5b =  
windows. The kernels were derived for an N-point DFT where ,N 2 048=  samples. Only the first 100 coefficients at the bottom-left corner of the N-by-N 
kernels are shown. The values are displayed in log of amplitude.
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function associated with a known lossy 
coding format at successive samples in 
the audio signal and searching for time
frequency coefficients quantized to zero 
until one of the sets shows visible traces of 
compression for a specific framing of 
the signal. We can see that such a pro
cess will be computationally demand
ing, as a full transform would have to be 
computed every time. The direct compu
tation of the MDCT, including the win
dowing using one of the specialized 
window functions presented earlier, can 
actually be translated into an SDFT with 
a kernel windowing by incorporating 
the computation of the window function 
and a part of the MDCT into a kernel, 
which will still happen to be very sparse, 
thus making the process computation
ally efficient.

Equation (5), shown at the bottom of 
the page, shows the computation of ,Y( )i  
the Npoint MDCT of signal x starting at 
sample i and modified by the window 
function w, from ,X( )i 1-  the Npoint DFT 
of x starting at i 1-  without window
ing, multiplied by the kernel K, which is 
derived from w.

Figure 2 shows the kernels derived for 
an Npoint MDCT, from the sine window 
where ,N 1 152=  samples, as in MP3, 
from the slope window where ,N 2 048=  
samples, as in Vorbis, and from the KBD 
window where N 512=  samples, as in 
AC3. As we can see, most of the values 
in those kernels appear to have negligible 
magnitudes, while the very few values 
with significant magnitudes appear to be 

concentrated around two diagonals, one 
going from the bottomleft to the top
center and one going from the topcenter 
to the bottomright. As in [4], we com
puted for each of those kernels the error 

in keeping the values greater than 0.01 
and obtained very small errors of 0.000, 
0.022, and 0.013, for the sine, slope, and 
KBD window kernel, respectively. With 
such a threshold, the sine kernel will only 
have around two nonzero values per row 
and the slope and KBD kernels around 
six nonzero values per row. Therefore, 
these very sparse kernels will barely 
affect the computational efficiency of 
the SDFT while still producing results 
equivalent to taking the MDCT of the 
signal modified by the corresponding 
window functions.

What we have learned
We have shown that the SDFT can incor
porate windowing in its computation by 
using a kernel that can be derived from 
any window function and can be made 
very sparse. This SDFT with kernel win
dowing will produce results equivalent 
to the DFT of the signal modified by the 
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corresponding window function, while 
keeping the process computationally effi
cient. This approach may be applied in 
audio compression identification, in par
ticular by making the process of framing 
detection much more efficient, allowing 
for the translation of a transform, such as 
the MDCT, into an efficient sliding ver
sion of itself.
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