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Sliding Discrete Fourier Transform with Kernel Windowing

The sliding discrete Fourier transform 
(SDFT) is an efficient method for 
computing the N-point DFT of a 

given signal starting at a given sample 
from the N-point DFT of the same sig­
nal starting at the previous sample [1]. 
However, the SDFT does not allow the 
use of a window function, generally incor­
porated in the computation of the DFT to 
reduce spectral leakage, as it would break 
its sliding property. This article will show 
how windowing can be included in the 
SDFT by using a kernel derived from the 
window function, while keeping the pro­
cess computationally efficient. In addi­
tion, this approach allows for turning other 
transforms, such as the modified discrete 
cosine transform (MDCT), into efficient 
sliding versions of themselves.

Relevance
The SDFT can be used to perform spectral 
analysis on successive samples in a signal 
without having to compute a new DFT 
from scratch every time, provided that win­
dowing can be incorporated into the com­
putation of the DFTs without harming the 
efficiency of the method. A notable appli­
cation of the SDFT with windowing can 
then be framing detection in audio signals 
that have undergone lossy compression in 
the context of audio compression identifi­
cation [2]. A lossy compression algorithm 
will typically introduce traces of compres­
sion in the signal being encoded, which can 
become visible in the time-frequency rep­
resentation when using the same param­
eters and framing that were used for the 
encoding. Therefore, the parameters and 
framing can be recovered by computing 
time-frequency representations at succes­
sive samples in the signal and identify­
ing when traces of compression become 

visible. This demanding process can be 
translated into an efficient one by using the 
SDFT with kernel windowing.

Prerequisites
Basic knowledge of digital signal process­
ing is required to understand this arti­
cle, particularly concepts such as the DFT, 
windowing, and general spectral analysis. 
More details about the SDFT and lossy 
audio compression identification can also 
be found in [1] and [2], respectively.

Problem statement and solution

Problem statement 
The SDFT allows for the computation 
of the N-point DFT of a signal from the 
N-point DFT of the same signal starting 
one sample earlier, in a sense by sliding a 
rectangular window of length N one sample 
forward. The SDFT essentially relies on the 
shift theorem, which states that multiplying 
a signal by a linear phase is equivalent to a 
circular shift in the corresponding DFT.

Equation (1), shown at the bottom of 
the page, shows the derivation of ,X( )i  
the N-point DFT of signal x  starting at 
sample ,i  from ,X( )i 1-  the N-point DFT 
of x  starting at ,i 1-  a process hence 
known as SDFT.

The SDFT thus only requires two N 
additions and N multiplications, leading 

to a linear time complexity of ( ),NO  
while the full and direct computation 
of the DFT and the fast Fourier trans­
form (FFT) are ( )NO 2  and ( ),logN NO  
respectively.

Transforms such as the DFT typically 
use a window function in their compu­
tation to reduce spectral leakage and 
enhance spectral analysis. However, the 
SDFT does not allow the incorporation 
of a window function as it will break the 
process shown in (1). One solution would 
be to perform the windowing in the 
frequency domain, i.e., on the derived 
DFT through convolution. A practical 
window function for that matter could be 
the Hanning window, as the correspond­
ing windowing in the frequency domain 
equals a simple three-point convolution 
[1]. Other window functions, however, 
may not be as practical, as the correspond­
ing convolutions may involve many more 
operations, which will ultimately hurt the 
computational efficiency of the SDFT. 
Therefore, the problem is to incorporate 
any window function into the computa­
tion of the DFTs in an efficient manner 
without breaking the SDFT process.

Solution: Kernel windowing
The idea of performing the windowing 
in the frequency domain can still be ex­
ploited by reformulating the convolution  
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as a multiplication by a kernel that can 
be derived from any window function. 
Such a kernel will be independent from 
the signal to be processed and only 
need to be computed once. It will typi­
cally have a very small number of values 
that would be significant, which means 
that most of the values can then be ig­
nored. This would lead to a very sparse 
kernel, which can then be applied to the 
DFT of the signal, producing results vir­
tually equivalent to the DFT of the same 
signal modified by the corresponding 
window function while preserving the 
computational efficiency of the SDFT.

The constant-Q transform (CQT) is a 
transform with a logarithmic frequency 
resolution that was proposed as a more 
adapted alternative to the FT for analyz­
ing music signals [3]. A fast algorithm 
was proposed soon after, which translat­
ed the slow computation of the CQT into 
the multiplication of a DFT, which can 
be efficiently computed using the FFT, 
and a kernel, which is computed once 
beforehand and typically very sparse 
[4]. The idea was to use Parseval’s theo­
rem to turn the direct computation in 
the time domain into a multiplication 
between a DFT and a kernel in the fre­
quency domain, essentially demonstrat­
ing the property of energy conversation 
between the time and the frequency 
domains [5].

Parseval’s theorem is recalled in (2). 
The value X is the N-point DFT of x and 
xr  represents the complex conjugate of x
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Following a similar idea, we propose 
the use of Parseval’s theorem to trans­
late the DFT of a windowed signal into 
the DFT of the signal, multiplied by a 
kernel that is derived from the corre­
sponding window function: a multipli­
cation that will happen after the SDFT 
process. Unlike in the fast CQT case, 
the purpose here is not to speed up the 
computation of the transform by taking 
advantage of the efficiency of the FFT 
algorithm in conjunction with the use of 
sparse kernel but to extract the window­
ing operation from the DFT computa­
tion so that the SDFT process shown in 
(1) still holds.

Equation (3), shown at the bottom 
of the page, illustrates the computation 
of ,X( )i  the N-point DFT of the signal 
x starting at sample i and modified by 
the window function w, from ,X( )i 1-  the 
N-point DFT of x starting at i 1-  with­
out windowing, multiplied by the kernel 
K, which is derived from w.

As we can see in (3), the kernel is com­
pletely independent from the signal; there­
fore, it only needs to be computed once, 
before the SDFT process. Furthermore, 
given the nature of such kernel, typically 
only a very small number of its values will 
be significant, which means that most of 
the values can then be 
zeroed, given some 
threshold, leading to 
a very sparse kernel. 
The multiplication of 
the derived DFT by 
such kernel will thus 
only involve few more 
operations, keeping the 
whole process com­
putationally efficient.

Figure 1 shows 
the kernels derived 
from some common window functions, 
i.e., Hanning, Blackman, triangular, 
Gaussian, Parzen, and Kaiser windows. 
As we can see, the Hanning window 
kernel shows only three nonzero values 
per row, confirming that the correspond­
ing windowing in the frequency domain 
equals a simple three-point convolution, 
while the Blackman window kernel shows 
five nonzero values per row. Both those 
windows are actually special cases of the 

generalized cosine window whose cor­
responding windowing in the frequency 
domain equals convolutions with typically 
only few points. Unlike the Hanning and 
Blackman window kernels, the triangular, 
Parzen, Gaussian, and Kaiser window 
kernels show additional nonzero values 
around their main diagonal, suggesting 
that the corresponding windowings in 
the frequency domain equal convolutions 
with many more points. However, most 
of those nonzero values have very small 
magnitudes ( . )0 01%  and could then be 
ignored without significantly affecting 
the actual windowing process. By using 

an appropriate thresh­
old, those kernels can 
therefore be made very 
sparse with only a few 
meaningful values per 
row in the same man­
ner as in the fast CQT 
case [4].

As proposed in [4], 
we computed for each 
of those kernels the 
error in keeping the 
values greater than a 

chosen threshold by dividing the sum of 
the magnitudes of the values after thresh­
olding by the sum of the magnitudes 
of all the values before thresholding. 
A threshold of 0.01 will thus give very 
small errors of 0.049, 0.009, 0.020, and 
0.015, for the triangular, Parzen, Gauss­
ian, and Kaiser window kernels, respec­
tively, when derived for an N-point DFT 
with , .N 2 048=  With such a threshold, 
the first three kernels will then only have  

	

.

x w e

X K

X x x e K

K
N
Y

N
y e

N
w e e

N
w e

1 1

1

1

X

( )
,

( )
,

,

( )

( )
k
i

k N
i n

n

N

n N
j nk

y

k
i

k

N

k k

N
Y

k
i

i i N N
j k

k

N

k k

k k
k N
k N

k n
n

N

N
j nk

n N
j nk

n

N

N
j nk

n
n

N

N
j n k k

0 0

1 2

0

1

1

1
1 1

2

0

1

0
0

0

1 2

2

0

1 2

0

1 2

n

k

=

=

= - +

= =

=

=

1

1
1

#

#
#

r

r

r

r r

r

+

=

- -

=

-

-
- + -

=

-

=

- -

-

=

- -

=

- -

l
l

l

l

l

l

l

l

l

l

l

l

l

l

^ h8 B

1 2 344 44

:

/

/

/

/

/

/
�

(3)

A notable application of 
the SDFT with windowing 
can then be framing 
detection in audio signals 
that have undergone 
lossy compression 
in the context of 
audio compression 
identification.
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five nonzero values per row, while the 
latter one will have three nonzero values 
per row. This shows that only a very small 
number of values is actually significant 
in such kernels. The multiplication of 
the DFT by those very sparse kernels 
will then only involve KN multiplica­
tions and KN additions, with K 3=  or 5, 
barely affecting the computational effi­
ciency of the SDFT, still maintaining a 
linear complexity of ( ),NO  and producing 
results virtually equivalent to taking the 
DFT of the signal modified by the corre­
sponding window functions.

Computational examples 

Framing detection  
and lossy audio coding
The SDFT with kernel windowing can be 
particularly useful for fast framing detec­
tion in the context of audio compres­
sion identification. Audio compression 
identification is the recovery of infor­
mation regarding the data compression 
that an audio signal has undergone. In 
particular, the recovery of the parameters 
and framing used at the time-frequency 
decomposition stage of the encoding could 

allow for identifying the coding format or 
detecting alterations in audio signals that 
have undergone lossy compression [2], 
[6]–[9]. Lossy compression algorithms 
typically introduce traces of compres­
sion in the audio signal being encoded 
in the form of time-frequency coefficients 
quantized to zeros, which can become vis­
ible when using the same parameters and 
framing that were used for the encoding. 
One approach to identify if and when 
lossy compression was used would then be 
to compute the time-frequency represen­
tation at successive samples in the audio 
signal and search for traces of compres­
sion every time, given a set of parameters 
associated with a known coding format, 
such as time-frequency transform, win­
dow length, and window function, a pro­
cess also known as framing detection.

Lossy audio coding formats, per­
haps the most popular ones being MP3, 
Advanced Audio Coding (AAC), AC-3, 
Vorbis, and Windows Media Audio 
(WMA), are widely used for storage (e.g., 
in music and video files) or transmission 
(e.g., in radio and television broadcasting). 
Compression algorithms that can encode to 
such formats first transform the audio sig­

nal into a time-frequency representation, 
derive a psychoacoustic model to locate 
regions of perceptually less significance, 
then quantize the data given the psycho­
acoustic model, and, finally, convert it into 
a bitstream. The transform used at the time-
frequency decomposition stage is typically 
based on the MDCT, and a variety of win­
dow lengths and window functions can be 
used depending on the coding format. In 
particular, specialized window functions 
such as the sine, slope, and Kaiser–Bessel-
derived (KBD) windows, are generally 
required for the MDCT to be invertible. 
For more information about lossy audio 
coding, see [10]. The computation of the 
MDCT without windowing is
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Sliding MDCT with kernel windowing 
In this context, performing framing detec­
tion for audio compression identification 
would involve computing an MDCT for 
every set of window length and window 
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FIGURE 1. The kernels derived from the (a) Hanning, (b) Blackman, (c) triangular, (d) Parzen, (e) Gaussian (with . )2 5a = , and (f) Kaiser (with . )0 5b =  
windows. The kernels were derived for an N-point DFT where ,N 2 048=  samples. Only the first 100 coefficients at the bottom-left corner of the N-by-N 
kernels are shown. The values are displayed in log of amplitude.
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function associated with a known lossy 
coding format at successive samples in 
the audio signal and searching for time-
frequency coefficients quantized to zero 
until one of the sets shows visible traces of 
compression for a specific framing of 
the signal. We can see that such a pro­
cess will be computationally demand­
ing, as a full transform would have to be 
computed every time. The direct compu­
tation of the MDCT, including the win­
dowing using one of the specialized 
window functions presented earlier, can 
actually be translated into an SDFT with 
a kernel windowing by incorporating 
the computation of the window function 
and a part of the MDCT into a kernel, 
which will still happen to be very sparse, 
thus making the process computation­
ally efficient.

Equation (5), shown at the bottom of 
the page, shows the computation of ,Y( )i  
the N-point MDCT of signal x starting at 
sample i and modified by the window 
function w, from ,X( )i 1-  the N-point DFT 
of x starting at i 1-  without window­
ing, multiplied by the kernel K, which is 
derived from w.

Figure 2 shows the kernels derived for 
an N-point MDCT, from the sine window 
where ,N 1 152=  samples, as in MP3, 
from the slope window where ,N 2 048=  
samples, as in Vorbis, and from the KBD 
window where N 512=  samples, as in 
AC-3. As we can see, most of the values 
in those kernels appear to have negligible 
magnitudes, while the very few values 
with significant magnitudes appear to be 

concentrated around two diagonals, one 
going from the bottom-left to the top-
center and one going from the top-center 
to the bottom-right. As in [4], we com­
puted for each of those kernels the error 

in keeping the values greater than 0.01 
and obtained very small errors of 0.000, 
0.022, and 0.013, for the sine, slope, and 
KBD window kernel, respectively. With 
such a threshold, the sine kernel will only 
have around two nonzero values per row 
and the slope and KBD kernels around 
six nonzero values per row. Therefore, 
these very sparse kernels will barely 
affect the computational efficiency of 
the SDFT while still producing results 
equivalent to taking the MDCT of the 
signal modified by the corresponding 
window functions.

What we have learned
We have shown that the SDFT can incor­
porate windowing in its computation by 
using a kernel that can be derived from 
any window function and can be made 
very sparse. This SDFT with kernel win­
dowing will produce results equivalent 
to the DFT of the signal modified by the 
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corresponding window function, while 
keeping the process computationally effi­
cient. This approach may be applied in 
audio compression identification, in par­
ticular by making the process of framing 
detection much more efficient, allowing 
for the translation of a transform, such as 
the MDCT, into an efficient sliding ver­
sion of itself.
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