REpeating Pattern Extraction
Technique (REPET)

EECS 352: Machine Perception of
Music & Audio

Zafar Rafii, Winter 2014



Observation

* Repetition is a fundamental element in
generating and perceiving structure
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Observation

* Musical works are often characterized by an
underlying repeating structure over which
varying elements are superimposed
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Observation

* Musical works are often characterized by an
underlying repeating structure over which
varying elements are superimposed
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Assumption

* There should be patterns that are more or less
repeating in time and frequency
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ldea

* REpeating Pattern Extraction Technique!

1.

2. Derive a repeating model

|ldentify the repeating elements

3. Extract the repeating structure
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ldea

* Simple music/voice separation method!
" Repeating structure = background music
= Non-repeating structure = foreground voice
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REPET
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Practical Advantages

Does not depend on special parametrizations
Does not rely on complex frameworks

Does not require external information




Practical Interests

e Karaoke gaming (need the music)
* Query-by-humming (need the voice)
e Audio remixing (need both components)

Zafar Rafii, Winter 2014

11



Intellectual Interests

* Music understanding
* Music perception
* Simply based on repetition!
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Parallels

* Background subtraction in computer vision

L L S %

Sequence of
video frames

Compare
frames to
estimate a
background
model




Parallels

* Background subtraction in computer vision

Extracted varying |g
foreground scene |

Extracted fixed 'a ) fa
background scene o




Parallels

Background subtraction in computer vision

" |[n audio, we also need to identify the repetitions!

Mixture Signal
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Parallels

* Background subtraction in computer vision

" |[n audio, we also need to identify the repetitions!

Vocal Foreground
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Musical Background
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Parallels

* Auditory segregation in human listeners

O
(o)
o
d Target identified as
\ the repeating object

Handsome professor

Unknown audio mixtures
with the same target
and different distractors Zafar Rafii, Winter 2014



Parallels

* Auditory segregation in human listeners

1

1 mixture:
B | \"
b 2 mixtures:
R | \‘
3 mixtures:
R | \‘
0 2 3 5
Number of Mixtures 5 miXtU res:
B | \"
R —
10 mixtures:

As the number of mixtures increases,
red/black = target/probe, the target becomes more apparent...
other colors = distractors [courtesy of Josh McDermott]
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frequency (kHz)

amplitude

1. Repeating Period

 We compute the autocorrelations of the
frequency rows of the mixture spectrogram
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frequency (kHz)

1. Repeating Period

e \We take the mean of the autocorrelation rows
and obtain the beat spectrum

Mixture Spectrogram Autocorrelation Plots
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1. Repeating Period

* The beat spectrum reveals the repeating

period p of the underlying repeating structure

Mixture Signal
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frequency (kHz)

correlation

2. Repeating Segment

 We then use the repeating period to segment
the mixture spectrogram at period rate

Mixture Spectrogram Segmented Spectrogram
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frequency (kHz)

[EEN

2. Repeating Segment

 We derive a repeating segment model by
taking the element-wise median of segments

20§ (N e
i 5_ i i'. ff { 18] | !
i |l

o
RPETrIT

o

Mixture Spectrogram

2 4 6 8 10 12
time (s)

Segmented Spectrogram

Zafar Rafii, Winter 2014

Repeating Segment

25



frequency (kHz)

2. Repeating Segment

 The median helps to derive a clean repeating
segment, removing the non-repeating outliers

Mixture Spectrogram Repeating Segment
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REPET
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3. Repeating Structure

e We take the element-wise min between the
repeating segment model and the segments

Repeating Spectrogram
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frequency (kHz)

3. Repeating Structure

 We obtain a repeating spectrogram model for
the repeating background
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frequency (kHz)

3. Repeating Structure

* The repeating spectrogram should not have
values higher than the mixture spectrogram
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frequency (kHz)

o

o

3. Repeating Structure

 We then divide, element-wise, the repeating
spectrogram by the mixture spectrogram

Mixture Spectrogram Repeatlng Spectrogram
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frequency (kHz)

o

o

3. Repeating Structure

* We obtain a soft time-frequency mask (with
values between 0 and 1)

Mixture Spectrogram Repeatlng Spectrogram Time-frequency Mask
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frequency (kHz)

3. Repeating Structure

* |n the soft t-f mask, the more/less a t-f bin is
repeating, the more it is weighted toward 1/0
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frequency (kHz)

3. Repeating Structure

 We could further derive a binary t-f mask by
fixing a threshold between 0 and 1

Repeating Spectrogram
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frequency (kHz)

frequency (kHz)

3. Repeating Structure

 We multiply, element-wise, the t-f mask with
the mixture STFT to get the background STFT
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3. Repeating Structure

* We obtain the repeating background signal by
inverting its STFT into the time domain

Mixture Spectrogram Background Spectrogram
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frequency (kHz)

3. Repeating Structure

* We obtain the non-repeating foreground
signal by subtracting background from mixture

Mixture Spectrogram _ Background Spectrogram
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Summary

* Repeating background = music component
* Non-repeating foreground = voice component
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Music/Voice Separation

* A variety of techniques has been proposed to
separate music and voice from a mixture

= Accompaniment modeling,

Pitch-based inference,

Non-negative Matrix Factorization (NMF), etc.

Music

Mixture
[ * Music/Voice
Separation

\_

» I
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Music/Voice Separation

 Accompaniment modeling

" Modeling of the musical accompaniment from the
non-vocal segments in the mixture

Mixture spectrogram  Vocal/non-vocal segmentation Music spectrogram

— Need an accurate vocal/non-vocal segmentation!
— Need a sufficient amount of non-vocal segments!

DR
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Music/Voice Separation

* Pitch-based inference

= Separation of the vocals using the predominant
pitch contour extracted from the vocal segments

Mixture spectrogram Predominant pitch detection Voice spectrogram

— Need an accurate predominant pitch detection!
— Cannot extract unvoiced vocals!



Music/Voice Separation

* Non-negative Matrix Factorization (NMF)

" [terative factorization of the mixture spectrogram
into non-negative additive basic components

Mixture spectrogram  Bases Activations Music & voice spectrograms

— Need to know the number of components!
—> Need a proper initialization!
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Evaluation

 REPET [Rafii et al., 2013]

= Automatic period finder
= Soft time-frequency masking

 Competitive method [Durrieu et al., 2011]
= Source-filter modeling with NMF framework
= Unvoiced vocals estimation

 Data set [Hsu et al., 2010]

= 1,000 song clips (from karaoke Chinese pop songs)
= 3 voice-to-music mixing ratios (-5, 0, and 5 dB)



Durrieu + High-pass

Durrieu
R = REPET

D=
D+H

R+H = REPET + High-pass

Evaluation
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Evaluation

e Conclusions

= REPET can compete with state-of-the-art (and
more complex) music/voice separation methods

" There is room for improvement (+ high-pass, +
optimal period, + vocal frames)

= Average computation time: 0.016 second for 1
second of mixture! (vs. 3.863 seconds for Durrieu)



Examples

 REPET vs. Durrieu (source-filter + NMF)

Music estimate (Durrieu) Voice estimate (Durrieu)
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Examples

 REPET vs. Ozerov (accompaniment modeling)

Music estimate (Ozerov) Voice estimate (Ozerov)
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Examples

 REPET vs. Virtanen (NMF + pitch-based)

Music estimate (Virtanen) Voice estimate (Virtanen)
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Examples

e REPET (more examples...)

RJD2 - Ghostwriter
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Thank you!
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Extensions

 REPET works well on excerpts with a relatively

stable repeating background (e.g., 10 s verse)

Mixture

Verse

REPET

4

Repeating background

T
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Extensions

* For full-track songs, the repeating background
is likely to vary over time (e.g., verse/chorus)

Full mixture

| lerse - lerse |

Full repeating background
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Prior Segmentation

 We could do a prior segmentation of the song
and apply REPET to the individual sections

Full mixture

lerse - lerse

REPET
1 ' 1
| |
1 1
1 1

. Full repeating background |

TTTEEEETTTT
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Sliding Window

 We could apply REPET to local sections of the
song over time via a fixed sliding window

Full mixture

; REPET
|

1
ting background
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Adaptive REPET

 We could directly adapt REPET along time by
locally modeling the repeating background

Full mixture

B

Adaptive REPET

Full repeating background

P T
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Adaptive REPET
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Original REPET
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Generalization

 REPET (and its extension) assumes
periodically repeating patterns

Mixture

REPET

¥

Periodically
repeating background

T
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Generalization

* Repetitions can also happen intermittently or
without a global (or local) period

Mixture

.
9

Non-periodically
repeating background

LIl §
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* |nstead of looking for periodicities, we can
look for similarities, using a similarity matrix

Beat spectrum/spectrogram

Generalization

Mixture

' | | ’ Similarity matrix

Non-periodically

repeating background

i
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Generalization

* The similarity matrix is a matrix where each
bin measures the (dis)similarity between any
two elements of a sequence given a metric

Similarity matrix

Sequence

i =

PR

Je[lwis+

Je|lwissIp+
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REPET-SIM
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Adaptive REPET
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REPET + Pitch

* REPET models the background rhythm

Mixture spectrogram “Period” Rhythmic mask Background rhythm
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: » »)

>
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time repetitions
(in time)

* Pitch-based methods model the lead melody

Mixture spectrogram Melodic mask Lead melody
“Pitch”
g > _/- - _/-
g — !
time harmonics
(in frequency)
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REPET + Pitch

* Auditory processing in human listeners
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