
Chapter 1

Audio Source
Separation in a
Musical Context

One of the great advances of the 20th and 21st

centuries has been the introduction and refine-
ment of audio recording and the audio editing
techniques recording allows. Remixing, editing
and remastering in the studio has enabled the
creation of new genres of music (e.g., musique
concrete, modern hip hop). When instruments
are recorded in isolation, modern editing and
mixing tools allow correction of small errors in
music recordings without requiring a group to
re-record an entire passage (e.g., a single missed
note in the flute part). This also allows rebal-
ancing of levels between musicians without re-
recording (e.g., increasing the volume of the flute
compared to the trumpet), and application of au-
dio effects to individual instruments (e.g., adding
reverberation to the vocals, but not the bass).

Many of these editing techniques require (nearly)
isolated instrumental recordings. One cannot edit
out a missed note in the flute, if that note is also
recorded on the adjacent microphone for the vi-
olin. Unfortunately, there are many recording
situations (e.g., a stereo recording of a 10-piece
ensemble) where there are many more instru-
ments than there are microphones. Thus, in-
struments are not recorded in isolation. Also,
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many legacy recordings are only available in the
final stereo (two-channel) or mono (one-channel)
mixture and the original pre-mixed tracks are not
available. All of these situations make many edit-
ing or remixing tasks difficult or impossible.

Audio source separation is the process of ex-
tracting individual sound sources (e.g., a single
flute) from a mixture of sounds (e.g., a record-
ing of a concert band using a single microphone).
Effective source separation would allow applica-
tion of editing and remixing techniques to ex-
isting recordings with multiple instruments on a
single track.

There have been many source separation ap-
proaches developed for general audio signals. Ex-
amples of general source separation algorithms
include Independent Component Analysis (ICA)
[1], Non-negative Matrix Factorization (NMF)
[2], Non-negative Tensor Factorization (NTF) [3],
Probabilistic Latent Component Analysis (PLCA)
[4], and Robust Principal Component Analysis
(RPCA) [5]. While all of these have been ap-
plied to music, most do not leverage any partic-
ular features of music to aid in the separation
process.

One element of a music scene which is highly
salient is the repeating structure found in the
music. Schenker asserted that repetition is what
gives rise to the concept of the motive [6]. Ruwet
used repetition as a criterion for dividing music
into small parts, revealing the syntax of the mu-
sical piece [7]. Ockelford argued that repetition
and imitation is what brings order to music [8].

Computational audio researchers have found
repetitive elements in music audio useful for many
purposes. Common applications include music
summarization. [9, 10, 11], audio segmentation
[12], beat estimation [13], finding drum patterns
in the audio [14], and structural analysis [15].
For a thorough review on music structure analy-
sis, the reader is referred to [11], [16] and [17].

The idea that repetition can be used for source
separation is supported by recent findings in psy-
choacoustics. McDermott et al. established that
the human auditory system is able to segregate
individual sources by identifying them as repeat-
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ing patterns embedded in the acoustic input, with-
out requiring prior knowledge of the source prop-
erties [18]. Given this, could repetition in music
be used as a basis for automatically separating
the audio into a repeating background (e.g. a
salsa montuno) and a varied foreground (the lead
‘salsero’ sala singer)?

Another salient feature of a musical scene is
melody. Bregman [19] shows that humans often
link together distinct sound elements (e.g. notes)
in time to produce perceptually salient entities
called auditory streams. These streams often
correlate strongly with melodies. Many trained
musicians are able to segregate several melodies
into independent elements they can attend to.
Can a machine do the same? Often, a musical
score can aid the trained musician to perform
this task better. Can a score provide similar aid
to an auditory streaming algorithm?

In this chapter we will focus on a pair of
source separation approaches designed to work
with music audio. The first seeks the repeated
elements in the musical scene and separates th
repeating from the non-repeating. The second
looks for melodic elements, pitch tracking and
streaming the audio into separate elements. This
second approach is then informed by a musical
score to improve performance.

1.1 REPET

In this work, we begin with the observation that
passages in many kinds of folk and pop music
can be understood as a background component
that is generally repeating in time, with a su-
perimposed foreground component that is gen-
erally variable in time (e.g., a repeating accom-
paniment superimposed with varying vocals or
a solo instrument). On this basis the REpeat-
ing Pattern Extraction Technique (REPET) was
proposed. REPET is an intuitive approach for
separating the repeating background from the
non-repeating foreground in an audio mixture.
The basic idea is to identify repeating elements
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in the mixture by measuring self-similarity along
time, derive repeating models by averaging the
repeating elements over their repetition rates,
and extract the repeating structure by compar-
ing the repeating models to the mixture.

A number of experiments have shown that
REPET can be effectively applied for separat-
ing pop songs into their music accompaniment
and singing voice. Unlike other approaches for
source separation, REPET does not depend on
special parametrizations, does not rely on com-
plex frameworks, and does not require external
information. Because it is only based on repeti-
tion, it has the advantage of being simple, fast,
blind, and therefore completely and easily au-
tomatable. More information about REPET, in-
cluding source code, audio examples, and related
publications can be found at http://music.eecs.
northwestern.edu/research.php?project=repet.

1.1.1 Original REPET

The original REPET algorithm was designed to
separate the repeating background from the non-
repeating foreground in an audio mixture (e.g.,
the music accompaniment from the singing voice
in a pop song) by identifying a period and model-
ing a segment for the periodically repeating pat-
terns [20, 21].

The method can be summarized in three stages
(see Figure 1.1): (1) identification of a repeating
period; (2) modeling of a repeating segment; and
(3) extraction of the repeating structure.

Repeating Period Identification

In the first stage, the time-domain signal (top
left of Figure 1.1) is transformed into a time-
frequency representation known as the spectro-
gram by using the Short-Time Fourier Trans-
form (STFT). A spectrogram represents sound
as a two-dimensional structure, where the verti-
cal axis shows frequency from low (at the bot-
tom) to high. The horizontal axis shows time,
from left to right. The spectrograms in Figure
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Figure 1.1: Overview of the original REPET: (1)
computation of the beat spectrum and identifica-
tion of a repeating period (top row); (2) filtering
of the spectrogram and modeling of a repeating
segment (middle row); (3) derivation of the time-
frequency mask and extraction of the repeating
background (bottom row).
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1.1 use red to indicate high energy and blue to
show low energy.

The autocorrelation of each frequency chan-
nel is then computed. An autocorrelation mea-
sures the similarity of a signal with a delayed
version of itself given different delays. The peak
of the autocorrelation function indicates the pe-
riod at which the sound repeats. To identify pe-
riodicity in the mixture, the beat spectrum [13]
is derived from the spectrogram by computing
the autocorrelation over time for every frequency
channel and averaging the autocorrelations over
the frequency channels. This is shown in the up-
per right of Figure 1.1. Here, a peak is a candi-
date period at which the audio may repeat.

If periodically repeating patterns are present
in the mixture, the beat spectrum forms peaks
that are periodically repeating at different pe-
riod rates, unveiling the underlying periodically
repeating structure of the mixture, as shown in
Figure 1.1. A best-fit repeating period can then
be identified from the beat spectrum, manually
or by using an automatic period finder [20, 21].

Repeating Segment Modeling

In the second stage, the repeating period is used
to find the period of the underlying repeating
structure in the recording. This typically corre-
lates to a pattern a few seconds long, such as a
four-chord repeating riff in a folk song. A model
of what is repeating in the music is built by seg-
menting the audio at the points where the pat-
tern repeats (middle panel of Figure 1.1). The
median value of the sound across all repetitions
is then used to model the canonical repeating
sound, as shown in Figure 1.1.

This approach assumes the non-repeating fore-
ground (e.g., vocals or an instrumental soloist)
has a sparse and varied time-frequency represen-
tation compared with the time-frequency repre-
sentation of the repeating background. There-
fore, time-frequency bins with small deviations
at their repetition rate would most likely repre-
sent repeating elements and would be captured
by the median model. On the other hand, time-
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frequency bins with large deviations at their rep-
etition rate would most likely be non-repeating
elements (i.e., the non-repeating musical fore-
ground) and would be removed by the median
model.

Repeating Structure Extraction

In the third stage, the repeating segment is used
to derive a repeating spectrogram by taking, for
every time-frequency bin, the minimum between
the repeating model and the mixture spectro-
gram at period rate. This assumes the mix-
ture spectrogram is the sum of a non-negative
repeating spectrogram and a non-negative non-
repeating spectrogram. Thus, the mixture at any
given time and frequency is assumed to always
be as loud or louder than the individual mix-
ture components (i.e., the repeating components
are assumed not to cancel out the non-repeating
components).

The repeating spectrogram is then used to de-
rive a time-frequency mask by dividing, for every
time-frequency bin, the repeating spectrogram
by the mixture spectrogram, as shown in Figure
1.1. The rationale is that, time-frequency bins
that are likely to repeat at their repetition rate
in the mixture spectrogram would have values
near one in the time-frequency mask and would
be weighted toward the repeating background.
On the other hand, time-frequency bins that are
not likely to repeat at their repetition rate in
the mixture spectrogram would have values near
zeros in the time-frequency mask and would be
weighted toward the non-repeating foreground.

The repeating background can then be ob-
tained by multiplying, for every time-frequency
bin, the time-frequency mask with the mixture.
The non-repeating foreground can be obtained
by simply subtracting the repeating background
from the mixture.

Experiments showed that REPET can be ef-
fectively applied for separating pop/rock song
clips into their accompaniment music and singing
voice [20, 21]. They also showed that REPET
can be combined with other methods to improve
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background/foreground separation; for example,
it can be used as a preprocessor to pitch de-
tection algorithms to improve melody extraction
[21], or as a post-processor to a singing voice sep-
aration algorithm to improve music/voice sep-
aration [22]. Experiments further showed that
REPET can be effectively applied for separating
full-track real-world songs into their accompani-
ment music and singing voice, by simply apply-
ing the method along time via a sliding window
[21]. There is, however, a trade-off for the win-
dow size in REPET: if the window is too long,
the repetitions will not be sufficiently stable; if
the window is too short, there will not be suffi-
cient repetitions [21].

1.1.2 Adaptive REPET

Adaptive REPET is an extension of the original
REPET and is designed to handle a varying peri-
odic background, i.e., when the repeating period
and/or the repeating patterns change over time
(e.g., the succession of two homogenous sections
in a song, such as a verse followed by the chorus),
without the need for segmenting or windowing
the audio [23].

As with the original REPET, the method can
be summarized in three stages (see Figure 1.2):
(1) identification of the repeating periods; (2)
modeling of a repeating spectrogram; and (3) ex-
traction of the repeating structure.

Identification of Repeating Periods

In the first stage, the signal is transformed into
a spectrogram. To identify local periodicities in
the mixture, the beat spectrogram [13] is derived
from the spectrogram by computing a beat spec-
trum for every time frame by sliding a window
along time. In other words, each column in the
beat spectrogram represents a beat spectrum at
a given time.

If periodically repeating patterns are present
in the mixture, the beat spectrogram forms hori-
zontal lines that are periodically repeating verti-
cally, corresponding to the succession of peaks in
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Figure 1.2: Overview of the adaptive REPET:
(1) computation of the beat spectrogram and
identification of the repeating periods (top row);
(2) filtering of the spectrogram and modeling of a
repeating spectrogram (middle row); (3) deriva-
tion of the time-frequency mask and extraction
of the repeating background (bottom row).
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the concatenated beat spectra, unveiling the un-
derlying periodically repeating structure of the
mixture, as shown in Figure 1.2. If variations
of periodicity happen over time in the mixture,
the horizontal lines in the beat spectrogram will
show variations in their vertical periodicity. The
repeating periods can then be identified from the
beat spectrogram, for all the time frames in the
mixture spectrogram, manually or by using an
automatic period finder [23].

Repeating Spectrogram Modeling

In the second stage, the repeating periods are
used to model an initial repeating spectrogram
by taking, for every time frame in the mixture
spectrogram, the median of the time-frequency
bins at their period rate, as shown in Figure 1.2

The original REPET assumes that there is
a single large period (e.g., the length of a mea-
sure) for all the repeating elements in the audio.
The adaptive REPET considers each time frame
individually (a single frame lasts roughly 20 to
40 milliseconds) and tries to find similar frames
separated from the current frame by some period
(e.g., 2 seconds). If similar frames are found at
this period (e.g., similar frames at -4 seconds, -2
seconds, +2 seconds), the repeating spectrogram
model for the current frame is built from those
frames. Once this is done, it moves forward to
the next time-frame and tries to find a period
at which the content of the new frame repeats.
This period may or may not be the same as the
previous time frame (e.g., a period of 1.9 second
instead of 2 seconds). This lets it handle period-
ically repeating structures that vary slowly over
time and also structures that are composed of in-
terleaved repeating patterns of different periods
(e.g. minimalist music).

Repeating Structure Extraction

In the third stage, the initial repeating spectro-
gram is used to derive a refined repeating spec-
trogram by taking, for every time-frequency bin,
the minimum between the initial repeating spec-
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trogram and the mixture spectrogram. The re-
peating spectrogram is then used to derive a time-
frequency mask by dividing, for every time-frequency
bin, the repeating spectrogram by the mixture
spectrogram, as shown in Figure 1.2.

The repeating background can then be ob-
tained by multiplying, for every time-frequency
bins, the time-frequency mask with the STFT of
the mixture and transforming the result back to
the time-domain. The non-repeating foreground
can be obtained by simply subtracting the re-
peating background from the mixture.

Experiments showed that adaptive REPET
can be effectively applied for separating full-track
real-world songs (e.g., a whole studio recording)
into their accompaniment music and singing voice,
unlike the original REPET which would only be
meaningful for short excerpts [23].

1.1.3 REPET-SIM

REPET-SIM is a generalization of the REPET
approach that was designed to handle non-periodically
repeating structures, i.e., when the repeating pat-
terns happen intermittently or without a clear
periodicity (e.g., repeated piano stabs in a jazz
combo that use the same chord voicing, but whose
rhythm varies). This is done by using a similarity
matrix to identify the repeating elements [24].

As with the previous two methods, the method
can be summarized in three stages (see Figure
1.3): (1) identification of the repeating elements;
(2) modeling of a repeating spectrogram; and (3)
extraction of the repeating structure.

Repeating Elements Identification

In the first stage, the signal is transformed into a
spectrogram. To identify similarities in the mix-
ture, the similarity matrix [25] is derived from
the spectrogram by computing the cosine simi-
larity between any two pairs of time frames.

If repeating elements are present in the mix-
ture, the similarity matrix would form regions of
high and low similarity at different time indices,
unveiling the underlying repeating structure of
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Figure 1.3: Overview of REPET-SIM: (1) com-
putation of the similarity matrix and identifica-
tion of the repeating elements (top row); (2) fil-
tering of the spectrogram and modeling of a re-
peating spectrogram (middle row); (3) derivation
of the time-frequency mask and extraction of the
repeating background (bottom row).
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the mixture, as shown in Figure 1.3. The re-
peating elements can then be identified from the
similarity matrix, for all the time frames in the
mixture spectrogram, manually or by using an
automatic peak finder [24].

Repeating Spectrogram Modeling

In the second stage, the repeating elements are
used to model an initial repeating spectrogram
by taking, for every time frame in the mixture
spectrogram, the median of the time-frequency
elements at their repetition rate, as shown in Fig-
ure 1.3.

Compared with the other REPET methods
(original and adaptive) that look for periodic sim-
ilarity between events in the audio scene, REPET-
SIM looks only for similarity, so that it can han-
dle non-periodically repeating structures, i.e., when
the repeating patterns happen intermittently or
without a clear periodicity.

Repeating Structure Extraction

In the third stage, the initial repeating spectro-
gram is used to derive a refined repeating spec-
trogram by taking, for every time-frequency bins,
the minimum between the initial repeating spec-
trogram and the mixture spectrogram.

The repeating spectrogram is then used to
derive a time-frequency mask by dividing, for
every time-frequency bin, the repeating spectro-
gram by the mixture spectrogram, as shown in
Figure 1.3.

The repeating background can then be ob-
tained by multiplying, for every time-frequency
bin, the time-frequency mask with the STFT of
the mixture and transforming the result back to
the time-domain. The non-repeating foreground
can be obtained by simply subtracting the re-
peating background from the mixture.

Experiments showed that REPET-SIM can
be effectively applied for separating full-track real-
world songs into their accompaniment music and
singing voice, also compared with the Adaptive
REPET [24]. Experiments also showed that REPET-



14CHAPTER 1. AUDIO SOURCE SEPARATION IN AMUSICAL CONTEXT

SIM can be effectively applied for separating two-
channel mixtures of one speech source and real-
world background noise into their background
noise and clean speech, by applying the method
online for real-time computing [26].

Note that FitzGerald proposed a method very
similar to REPET-SIM for music/voice separa-
tion [27].

1.2 Pitch-based Source Sep-
aration

The previous sections focused on performing source
separation using cues related to the repetitive,
rhythmic structure of the music audio. Another
fruitful approach is to use the melodic content
as embodied by the pitches present in the audio.
We now turn to this approach.

Pitched musical instruments (e.g., brass, wood-
winds, strings, and keyboard instruments) are
harmonic sound sources. Most of the energy in a
harmonic sound is located at frequencies that are
integer multiples of the fundamental frequency
(F0). For example, if a piano plays a single note
at A = 440 Hz, most of the energy in the sound
will be concentrated at 440 Hz, 880 Hz, 1320
Hz, and so on. While F0 is a physical attribute
and pitch is a perceptual attribute of a sound,
for a harmonic sound, its pitch can be reliably
matched to the F0. Therefore, we do not differ-
entiate F0 from pitch in our discussions here.

Pitch information helps to separate harmonic
sources out from a mixture of sounds. In this sec-
tion, we present our work on pitch-based source
separation of audio mixtures composed of har-
monic sound sources. Typically, this means sep-
aration of instruments from a music recording
containing multiple concurrent instruments.

The first step is to estimate the pitches of
these harmonic sources from the mixture [49].
This is called multi-pitch estimation (MPE). A
frame is typically a 20 to 40 millisecond time
window. MPE is typically performed in each in-
dividual time frame of the audio mixture. The
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second step is to connect the pitch estimates in
different frames to form pitch trajectories, each
of which corresponds to a source [52]. This is
called multi-pitch streaming. The last step is to
extract the harmonics from the pitch estimates
of each source and reconstruct the source signal.
In the following, we describe the three steps sep-
arately.

1.2.1 Multi-pitch Estimation

Multi-pitch estimation is the task of estimating
pitches and the number of pitches in each frame
of a harmonic sound mixture. In music infor-
mation retrieval, the number of pitches is also
called polyphony. Many methods have been pro-
posed in the literature. Some do not employ
any preprocessing of the signal and work with
the full time domain or frequency domain signal
[28, 29, 30, 31, 32, 33, 34, 35, 36, 37]; others re-
duce the signal to a more compact representation
such as employing an auditory filterbank as the
front end [38, 39, 40, 41] or representing the spec-
trum only with significant peaks [42, 43, 44]. Our
method lies in the second category. More specif-
ically, we represent the power spectrum of the
audio mixture with both significant peaks and
non-peak regions, and propose a maximum like-
lihood method to estimate the pitches and the
polyphony from the peak/non-peak-region rep-
resentation [49].

Peak Detection

For harmonic sounds, significant spectral peaks
ideally correspond to harmonics of the pitches.
Therefore, detection of these peaks would help
us infer the pitches. Taking one frame of the
audio signal, we first perform Fourier transform
[45] to turn the audio into a spectral representa-
tion. The middle top panel of Figure 1.1 shows a
spectrogram. Here, each column of the image is
the spectral representation of a single time step
(typically a 20 to 40 millisecond window).

Spectral peaks at each time slice are detected
by the peak detector described in [46]. Basically,
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there are two criteria that determine whether a
local maximum in the spectrum should be la-
beled as a peak. The first criterion is global:
the local maximum should not be less than some
threshold (e.g., 50 dB) lower than the maximum
of the spectrum across all frequencies in that
time step. The second criterion is local: the lo-
cal maximum should be locally higher than a
smoothed version of the spectrum by at least
some threshold (e.g., 4 dB). Finally, the peak am-
plitudes and frequencies are refined by quadratic
interpolation [47].

We define the non-peak region as those fre-
quencies that are further that a quarter tone
from any of the detected spectral peaks. Al-
though the non-peak region cannot tell us where
the pitches should be, it can tell us where the
pitches should not be. Pitches are not likely to
be located at frequencies whose harmonics are in
the non-peak region.

Likelihood Function

We propose a maximum likelihood method to es-
timate the set of pitches from the peak/non-peak
representation of the mixture spectrum. The
likelihood function is defined as the multiplica-
tion of the peak-region likelihood and the non-
peak-region likelihood, assuming conditional in-
dependence of peaks and the non-peak region
given the pitches. The peak region likelihood
is defined as the probability of occurrence of the
peaks, given an assumed set of pitches. The non-
peak region likelihood is defined as the probabil-
ity of not observing peaks in the non-peak re-
gion, given an assumed set of F0s. The peak
region likelihood and the non-peak region like-
lihood act as a complementary pair. The for-
mer helps find F0s that have harmonics that ex-
plain peaks, while the latter helps avoid F0s that
would predict harmonics where none are observed
(i.e., in the non-peak region).

To define the peak-region likelihood, we char-
acterize each peak by its frequency and ampli-
tude. We further consider the probability that
each detected peak is a normal peak or a spu-



1.2. PITCH-BASED SOURCE SEPARATION17

rious peak. By “normal” we mean the peak is
generated by some harmonic of the underlying
pitches; and by “spurious” we mean the peak is
due to other factors such as side-lobes, peak de-
tection errors, etc.

We train the parameters of the likelihood func-
tions using training data with ground-truth pitches
and detected peaks and non-peak regions. Two
kinds of training data are used. The first kind
is a set of isolated notes from the IOWA mu-
sical instrument note sample dataset (http://
theremin.music.uiowa.edu/MIS.html). They
are used to train the parameters of the non-peak
region likelihood model. The second kind is a set
of randomly mixed chords using these isolated
notes. They are used to train the parameters of
the peak-region likelihood model. Ground-truth
pitches are detected using the YIN [48] pitch
tracking algorithm on isolated notes before mix-
ing the isolated notes together. Peaks and the
non-peak region are detected using the proposed
method.

Pitch and Polyphony Estimation

Given the set of detected peaks, frequencies within
one semitone around each peak are considered as
possible pitches (i.e., possible F0s). The under-
lying pitches in this frame are thus assumed to
compose a subset of these frequencies. This helps
to constrain the set of possible hypotheses to rea-
sonable ones, given the data. The task of the
maximum likelihood estimation is thus to find
the subset of potential F0s that gives the high-
est likelihood to having generated the observed
peaks in the spectrum.

It is, however, intractable to enumerate all
these subsets. A typical scene may have 50 to
100 peaks. The set of all subsets of 100 peaks has
2100 elements and is not tractable to fully search.
We therefore propose a iterative greedy search
strategy [49]. We start from an empty subset
to represent the estimated pitches. At each iter-
ation, we add the one pitch estimate that most
increases the likelihood of the subset. This strat-
egy only enumerates a very small amount of sub-
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sets, as the choice of latter pitches depends on the
choice of earlier pitches. However, the computa-
tional complexity is significantly reduced from
exponential to linear with respect to the number
of peaks.

An important question for this iterative greedy
search process is “When should we stop?” In
other words, how many pitches should we esti-
mate in each time frame. Ideally, we hope that
the likelihood function can take care of this prob-
lem and stop the process when the likelihood
does not increase anymore when adding a new
pitch. However, similar to many other maxi-
mum likelihood estimation problems, there is an
overfitting problem. The likelihood typically in-
creases with the number of pitches, although the
increase becomes slower. We use a simple thresh-
olding method to address this problem. We do
not stop the iterative process until the number of
pitches in the subset reaches a predefined max-
imally possible polyphony (e.g., 9). We then
calculate the likelihood increase from 1 pitch to
the maximally possible polyphony as the maxi-
mally possible likelihood increase. We then es-
timate the polyphony as the number of pitches
that first surpasses 88% of the maximally possi-
ble increase. The threshold was tuned on a train-
ing set of musical chords with polyphony from 1
to 6. This simple polyphony estimation method
is shown to work well on both musical chords and
real music pieces.

Pitch Refinement

Pitches and polyphony estimated in individual
frames may contain errors that make the pitch
contours non-smooth over time. By utilizing con-
textual information, it is possible to fix these er-
rors and improve the pitch estimation accuracy.

We use a moving average to calculate the re-
fined polyphony estimate with a triangular mov-
ing window with size of 19 frames. We also build
a pitch histogram with a granularity of a semi-
tone by counting the pitch estimates within the
window, and rank the pitches by their weighted
counts according to the window. The top sev-
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eral pitches are returned as the refined pitches
with equal weights, where the number is equal
to the refined polyphony estimate. In experi-
ments we show that this refinement step removes
many insertion and deletion pitch estimation er-
rors, and significantly increases the estimation
accuracy [49].

1.2.2 Multi-pitch Streaming

The pitches estimated in the previous section can
help us separate harmonic sources in each indi-
vidual frame. However, to separate the source
signal over multiple frames, we need to connect
these pitches into streams, each of which cor-
responds to a source. This is the multi-pitch
streaming problem. Researchers have proposed
to use frequency/amplitude continuity to stream
pitches [50, 28, 33, 51], but this approach only
works within a note where the pitch does not
change abruptly. For streaming pitches into non-
continuous pitch contours, we proposed the first
method [52]. The basic idea is to use the tim-
bre information. Notes performed by the same
instrument have similar timbre than those per-
formed by different instruments. Therefore, we
associate each pitch estimate with a timbre fea-
ture vector, and perform clustering on the timbre
feature vectors. Ideally, each cluster will corre-
spond to one source and their pitches form the
pitch stream of that source.

Timbre Features

We need to calculate a timbre feature vector for
each pitch estimate in each frame, and this fea-
ture should be calculated from the mixture sig-
nal directly. In our work we use two kinds of
features. The first one is called “harmonic struc-
ture” described in [46]. It is defined as a vector of
relative logarithmic amplitudes of the harmonics
of a pitch estimate. The harmonics are at in-
teger multiples of the pitch. We use the first
50 harmonics to create a 50-dimensional timbre
vector. We choose this dimensionality because
most instruments have less than 50 prominent
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harmonics. For each harmonic, we use the peak-
finder from [46] to see if there is a significant
peak within a musical quarter-tone. If no peak
is associated, the magnitude of the harmonic is
set to 0 dB, otherwise it is set to the value of the
nearest peak. Then, the representation is nor-
malized. This feature has shown to be similar
for notes played by the same instrument within
a narrow pitch range, while different for different
instruments.

Another feature is called the “uniform dis-
crete cepstrum (UDC)” [52]. It is calculated by
taking the discrete cosine transform of a sparse
log-amplitude magnitude spectrum where the nonzero
elements are the harmonics of the pitch. This
feature lies in the cepstral feature category and
represents the spectral envelope of the harmonics
of the target pitch. However, unlike other cep-
stral features such as the ordinary cepstrum or
mel-scale cepstral coefficients (MFCC), UDC can
be calculated from the mixture spectrum directly
for the target source, without resorting to source
separation. UDC has been shown to outperform
other cepstral representations and the harmonic
structure feature in an instrument recognition
task of musical chords [53].

Constrained Clustering

Given the feature vector of each pitch estimate,
we perform K-means clustering on the pitches,
to minimize the timbre inconsistency within each
cluster. However, results show that there are two
kinds of common errors. In the middle panel of
Figure 1.4, a number of pitches are clustered into
the wrong trajectory. For example, the pitches
around MIDI number 55 from 14.8 sec to 15.8
sec form a continuous contour and are all played
by the bassoon. However, in the clustering, some
of them are assigned to saxophone. In another
example, from 16.8 sec to 17.6 sec, the K-means
clustering puts two simultaneous pitches into the
saxophone stream. This is not reasonable, since
saxophone is a monophonic instrument.

If we know that different sources do not of-
ten perform the same pitch at the same time and
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Figure 1.4: Comparison of the ground-truth
pitch streams, K-means clustering (K = 2) re-
sults (i.e., only minimizing the objective func-
tion), and the proposed method’s results (i.e.,
considering both objective and constraints).
Both the K-means and the proposed method take
the ground-truth pitches as inputs, use 50-d har-
monic structure as the timbre feature, and ran-
domly initialize their clusterings. Each point in
these figures is a pitch. Different instruments are
marked with different markers (circles for saxo-
phone and dots for bassoon).

all sources are monophonic, we can impose two
kinds of constraints on some pairs of the pitches
to improve clustering: A must-link constraint
is imposed between two pitches that differ less
than ∆t in time and ∆f in frequency. It speci-
fies that two pitches close in both time and fre-
quency should be assigned to the same cluster.
A cannot-link constraint is imposed between two
pitches in the same frame. It specifies that two
simultaneous pitches should be assigned to differ-
ent clusters. These must-links and cannot-links
form the set of all constraints. The bottom panel
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of Figure 1.4 shows the result obtained from our
proposed algorithm, considering both the objec-
tive and constraints.

Iterative Algorithm

The formulated constrained clustering problem
has two properties that mean existing constrained
clustering algorithms [54, 55, 56] cannot be ap-
plied: 1) constraints are inconsistent to each other
as they are imposed on pitch estimates which
contain errors; 2) almost every pitch estimate is
involved in some constraint. We therefore pro-
pose a new algorithm. It starts from an ini-
tial partition that satisfies a subset of all the
constraints. Then it iteratively minimizes the
objective function while incrementally satisfying
more constraints. While the details of the al-
gorithm can be found in [52], here we state its
two important properties: 1) it always converges;
2) the timbre inconsistency objective function
monotonically strictly decreases while the num-
ber of satisfied constraints monotonically increases.

1.2.3 Constructing Harmonic Masks

Given the estimated pitch stream for each har-
monic source, we build a soft frequency mask
around its harmonics to separate its magnitude
spectrum from the mixture spectrum [57]. We
then combine the separated magnitude spectrum
with the phase spectrum of the mixture signal
and perform an inverse Fourier transform to cal-
culate the time-domain signal. Finally, the overlap-
add technique [45] is applied to concatenate the
current frame to previously separated frames.

To calculate the frequency masks for sources,
we first identify their harmonics and overlapping
situations from the estimated pitches. Each fre-
quency bin is then classified into three kinds ac-
cording to the number of harmonics that involve
this frequency bin: nonharmonic bin, non-overlapping
harmonic bin, or overlapping harmonic bin. For
a nonharmonic bin, the masks are designed to
evenly distribute the mixture energy to all active
sources. For a non-overlapping harmonic bin, the
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mixture energy is solely distributed to the source
whose harmonic involves the bin.

The mask design for overlapping harmonic
bins is the most difficult. One can calculate an
average harmonic structure template for each source
from the harmonic structures of its estimated
pitches, and then use the template to design the
mask value at different harmonics [46]. This method
considers the timbre model of the sources. A sim-
pler method is to distribute the mixture energy
to overlapping harmonics, in the inverse propor-
tion to the square of the harmonic indices. This
method does not model the timbre of sources,
instead, it makes a general assumption that the
harmonic amplitude decays at the same rate with
respect to the harmonic index, regardless of pitch
and instrument that produced the note. This is
a very coarse assumption but it provides a simple
and relatively effective way to resolving overlap-
ping harmonics.

1.3 Leveraging the Musical Score

Previous sections described source separation al-
gorithms that depend on repeating (rhythmic)
content and pitch-based (melodic) content to per-
form separation. We now consider the case where
one can improve a source separation algorithm
by using information in addition to the audio
recording. For many music pieces, music scores
are widely available. In this scenario, score infor-
mation can be leveraged to help analyze and sep-
arate the audio signal. More specifically, if the
audio performance is faithful to the score and
the audio and the score are aligned (i.e., syn-
chronized), the score can tell us what pitches are
likely being played at a time of the audio. This
can greatly improve the accuracy of melodic, pitch-
based source separation. We can use the score-
provided pitch information to separate the har-
monic sources in the audio. Such a system is
called a score-informed source separation system.

In this chapter, we describe our work on an
online score-informed source separation system
called Soundprism [57]. Soundprism first aligns
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the audio with the score, then estimates the pre-
cise pitches based on the score-provided pitches
in each frame, and finally separates audio sources
in the frame. All of these operations are per-
formed in an online fashion, i.e., it processes the
audio frame-by-frame in a serial fashion, with-
out having the entire audio available. Figure 1.5
illustrates the system overview of Soundprism.

Figure 1.5: System overview of Soundprism.

1.3.1 Audio-score Alignment

The first stage of Soundprism is online audio-
score alignment, also called score following. The
score follower takes a piece of polyphonic music
audio as input and pre-stores its electronic score
(e.g., MIDI). It then outputs a score position for
each time frame in a sequence. We propose a
hidden Markov process model to do so, as illus-
trated in Figure 1.6. The n-th time frame of the
audio is associated with a 2-dimensional hidden
state vector sn = (xn, vn)T , where xn is its score
position (in beats) and vn is its tempo (in Beats
Per Minute (BPM)). Each audio frame is also as-
sociated with an observation variable yn, which
represents the magnitude spectrum of the time
frame. Our aim is to infer the current score po-
sition xn from current and previous observations
y1, · · · ,yn. To do so, we need to define a pro-
cess model to describe how the states transition,
an observation model to evaluate hypothesized
score positions for the current audio frame, and
to find a way to do the inference in an online
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fashion.

Figure 1.6: Illustration of the state space model
for online audio-score alignment.

Process Model

A process model defines the transition probabil-
ity from the previous state to the current state,
i.e., p(sn|sn−1). This tells us how the score po-
sition and tempo changes from one frame to an-
other and the probability of the change. We use
two dynamic equations to define this transition.
While the detailed equations are ignored here,
the basic idea is that the change of score position
is determined by the tempo and the time inter-
val between two adjacent frames. Also the tempo
changes randomly around the previous tempo as-
suming a Gaussian distribution if the score posi-
tion just passed a note onset or offset, and does
not change otherwise.

Note that we do not introduce randomness
directly in score position. This is to avoid disrup-
tive changes of score position estimates. In ad-
dition, randomness is only introduced when the
score position has just passed a note onset or off-
set. This is because it is rather rare that the per-
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former changes tempo within a note. Second, on
the listener’s side, it is impossible to detect the
tempo change before hearing an onset or offset,
even if the performer does make a change within
a note. Therefore, changing the tempo state in
the middle of a note is not in accordance with
music performance, nor does it have evidence to
estimate this change.

Observation Model

The observation model evaluates how well a hy-
pothesized state (score position and tempo) can
explain the observation, i.e., p(yn|sn). In this
work, we use the multi-pitch likelihood model as
described in Section 1.2.1. The basic idea is that
if the score pitches at the hypothesized score po-
sition fit well to the magnitude spectrum of the
current frame yn, then the hypothesis is good.
To calculate the multi-pitch likelihood, we just
plug the score pitches into the likelihood func-
tion described in Section 1.2.1.

Clearly the observation model itself is not
enough to estimate the hidden state (e.g., the
score position), as the score may show the same
pitches at different positions. In addition, the
tempo dimension of the state does not play in
the observation model. These problems, how-
ever, are addressed when the observation model
and process model works together. The process
model, considering the tempo dimension and the
continuity of state changes, would only favor hy-
pothesized states whose score position is close to
the previous score position. This is the key idea
of the hidden Markov process model.

Our observation model only considers infor-
mation from the current frame, and could be im-
proved if considering information from multiple
frames. Ewert et al. [58] incorporate inter-frame
features to utilize note onset information and im-
prove the alignment accuracy. Joder et al. [59]
propose an observation model which uses obser-
vations from multiple frames for their conditional
random field-based method. In the future we
want to explore these directions to improve our
score follower.
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Inference

Given the process model and the observation model,
we want to infer the state of the current frame
from current and past observations. From a Bayesian
point of view, this means we first estimate the
posterior probability p(sn|Y1:n), then decide its
value using some criterion like maximum a pos-
terior (MAP) or minimum mean square error
(MMSE). For hidden Markov processes, this pos-
terior probability at the current frame can be
updated from the previous frame. Therefore, we
can estimate the posterior probability and the
hidden states in an online fashion.

Here we use a bootstrap filter, one variant of
particle filters [60, 61] to do the online update
of the posterior probability. The process starts
from an initialization of M particles. Their score
positions are all set to the beginning of the score
and their tempi are uniformly distributed be-
tween half and twice of the score-notated tempo.
These particles represent an initialization of the
posterior probability. To update the posterior
probability when a new audio frame comes in,
the particles are first moved using the process
model, i.e., the score positions and tempi of the
particles are changed. Then the observation like-
lihood of each particle is calculated using the
observation model, which indicates the fitness of
the particle to the current audio frame. The like-
lihood is set as the weight of the particle. These
particles are then resampled with replacement
according to their weights to generate a new set
of M particles. Particles that do not fit to the
current frame are less likely to remain in the new
particle set, while particles that are a better fit
to the current frame may retain multiple copies
in the new particle set. A small random per-
turbation is imposed on these copies to prevent
degeneracy of the particles. Now the new set of
particles represent the new posterior probability.
The average value of these particles is output as
the estimate of the hidden state in the current
frame.

The set of particles is not able to represent
the distribution if there are too few, and is time-
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consuming to update if there are too many. In
our work we tried to use 100, 1,000 and 10,000
particles. We find that with 100 particles, the
score follower is often lost after a number of frames.
But with 1000 particles, this rarely happens and
the update is still fast enough. Therefore, 1000
particles are used in this chapter.

1.3.2 Pitch Refinement and Source
Separation

Given the aligned score position for each audio
frame, we know what instrument is playing what
pitch in this frame from the score. This impor-
tant information for separating harmonic sources.
However, the pitches provided by the score are
integer MIDI pitch numbers. MIDI pitch num-
bers indicate keys on the piano keyboard. Typi-
cally, MIDI 69 indicates the A above Middle C.
Assuming A440-based equal temperament allows
translation from MIDI pitch to frequency in Hz.
The resulting frequencies are rarely equal to the
real pitches played in an audio performance. In
order to extract the harmonics of each source in
the audio mixture, we need to refine them to get
accurate estimates of pitches played in the audio.

We refine the pitches using the multi-pitch es-
timation algorithm as described in Section 1.2.1,
but restricting the search space within a semi-
tone of the score-notated pitches. We also as-
sume polyphony is given by the score.

Given the refined pitches in each audio frame,
we use the same method described in Section
1.2.3 to construct a harmonic mask for each pitch
to separate the magnitude spectrum. Finally, we
apply inverse Fourier transform with the phase
spectrum of the mixture signal and overlap-add
technique to reconstruct the separated source sig-
nals.

1.4 Conclusions

In this chapter we have outlined how to perform
audio source separation on music using the cues
of repeating musical structure and pitch content.
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We then showed how one can augment pitch-
based separation algorithm by leveraging the in-
formation in a musical score, where available.
Moving forward, we envision a combination of
the score-informed pitch-based separation with
separation based on rhythmic structure. Com-
bining these should allow separation of musical
instruments from an audio mixture in a large va-
riety of contexts that are currently intractable.
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