| Audio separation | Spectrogram models | KAM Light |  |
|------------------|--------------------|-----------|--|
| 000000<br>00     | 0000               |           |  |

# Scalable audio separation with light Kernel Additive Modelling

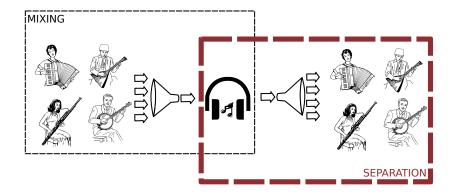
# Antoine Liutkus<sup>1</sup>, Derry Fitzgerald<sup>2</sup>, Zafar Rafii<sup>3</sup>

<sup>1</sup>Inria, Université de Lorraine, LORIA, UMR 7503, France <sup>2</sup>NIMBUS Centre, Cork Institute of Technology, Ireland <sup>3</sup>Gracenote, Media Technology Lab, Emeryville, CA, USA



| Audio separation   | Spectrogram models | KAM Light |  |
|--------------------|--------------------|-----------|--|
| <b>00000</b><br>00 | 0000<br>00         |           |  |

# Separating audio sources



In this presentation: mono mixtures

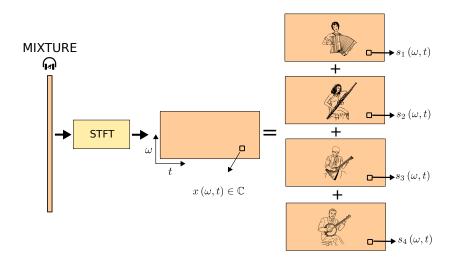
 $\Rightarrow$  General multichannel case in the paper

Liutkus\*, Fitzgerald, Rafii

KAML for scalable audio separation

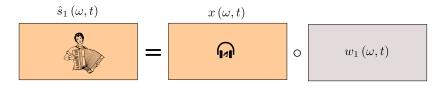
| Audio separation<br>○●○○○○<br>○○ | Spectrogram models<br>0000<br>00 | KAM Light<br>000 |  |
|----------------------------------|----------------------------------|------------------|--|
|                                  |                                  |                  |  |
|                                  |                                  |                  |  |

# Notations



| Audio separation<br>00●000<br>00 | Spectrogram models<br>0000<br>00 | KAM Light<br>000 |  |
|----------------------------------|----------------------------------|------------------|--|
|                                  |                                  |                  |  |
| <b>—</b> : c                     |                                  |                  |  |

# Time frequency masking



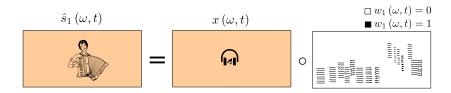
• Each source STFT  $s_j(\omega, t)$  is obtained by *filtering* the mixture

$$\hat{s}_{j}(\omega,t) = x(\omega,t) w_{j}(\omega,t)$$

- Underdetermined separation  $\Rightarrow w_i$  varies with both  $\omega$  and t
- Waveforms obtained by inverse STFT

Many different ways to get a Time-Frequency (TF) mask  $w_j(\omega, t)$ 

| Audio separation<br>000●00<br>00 | Spectrogram models<br>0000<br>00 | KAM Light<br>000 | Results<br>00 |
|----------------------------------|----------------------------------|------------------|---------------|
| Time frequency                   | masking                          |                  |               |



- $s_j(\omega, t)$  is assumed equal either to  $x(\omega, t)$  or to 0
- A classification task over the mixture STFT x
  - $\Rightarrow$  based on features
    - pitch detection+harmonics selection (CASA)panning position (DUET)

Y. Han and C. Raphael. Informed source separation of orchestra and soloist. In Proceedings of the 11th International Society for Music Information Retrieval Conference (ISMIR), pages 315–320, 2010

O. Yilmaz and S. Rickard. Blind separation of speech mixtures via time-frequency masking. IEEE Trans. on Signal Processing, 52(7):1830–1847, 2004

Liutkus\*, Fitzgerald, Rafii

04/22/2015 5/20

| Audio separation<br>0000●0<br>00 | Spectrogram models<br>0000<br>00 | KAM Light<br>000 |  |
|----------------------------------|----------------------------------|------------------|--|
|                                  |                                  |                  |  |

# Getting the mask

Binary masking yields **musical noise**  $\Rightarrow$  Soft masking  $w_j(\omega, t) \in [0\,1]$  is better!

Example: Wiener filtering for Gaussian processes

Sources energies  $p_j(\omega, t) \ge 0$  add up to get mix energy

$$\sum_{j} p_{j}(\omega, t)$$

•  $w_j(\omega, t)$  taken as proportion of source j in mix

$$w_{j}\left(\omega,t
ight)=rac{p_{j}\left(\omega,t
ight)}{\sum_{j'}p_{j'}\left(\omega,t
ight)}\in\left[0\,1
ight]$$

L. Benaroya, F. Bimbot, and R. Gribonval. Audio source separation with a single sensor. IEEE Trans. on Audio, Speech and Language Processing, 14(1):191–199, January 2006

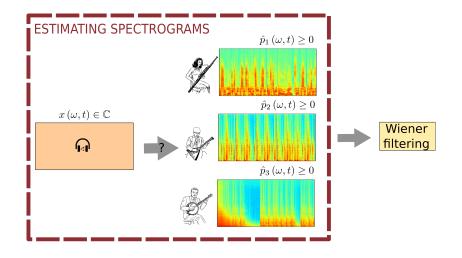
Liutkus\*, Fitzgerald, Rafii

KAML for scalable audio separation

04/22/2015 6/20

| Audio separation<br>00000●<br>00 | Spectrogram models<br>0000<br>00 | KAM Light<br>000 |  |
|----------------------------------|----------------------------------|------------------|--|
|                                  |                                  |                  |  |
|                                  |                                  |                  |  |

# Time-Frequency masking challenges



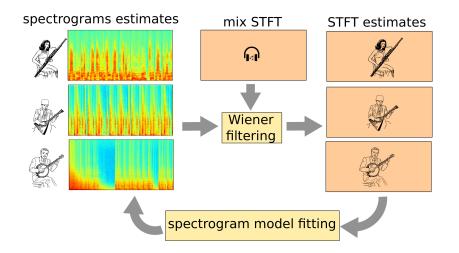
Liutkus\*, Fitzgerald, Rafii

KAML for scalable audio separation

04/22/2015 7/20

| Audio separation<br>○○○○○○<br>●○ | Spectrogram models<br>0000 | KAM Light<br>000 |  |
|----------------------------------|----------------------------|------------------|--|
|                                  |                            |                  |  |
| Iterative ann                    | roaches                    |                  |  |

main ideas



| Audio separation | Spectrogram models | KAM Light |  |
|------------------|--------------------|-----------|--|
| 000000<br>00     | 0000<br>00         |           |  |

# The need for spectrograms models

- For each time frequency bin  $(\omega, t)$ 
  - ightarrow we have J unknowns  $p_{j}\left(\omega,t
    ight)\geq0$
  - ightarrow we have 1 observation  $x(\omega,t)\in\mathbb{C}$
  - $\Rightarrow$  The problem is ill-posed
- $\Rightarrow$  We need to:
  - $\rightarrow$  exploit redundancies (e.g. multichannel data)
  - $\rightarrow~$  reduce the number of parameters

We should use prior knowledge on  $p_i$ 

### ⇒ exploit expected structure of spectrograms

N.Q.K. Duong, E. Vincent, and R. Gribonval. Under-determined reverberant audio source separation using a full-rank spatial covariance model. Audio, Speech, and Language Processing, IEEE Transactions on, 18(7):1830 -1840, sept. 2010

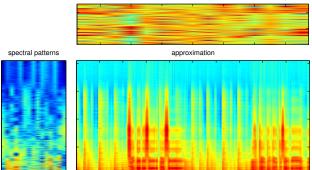
Liutkus\*, Fitzgerald, Rafii

KAML for scalable audio separation

| Audio separation | Spectrogram models | KAM Light |  |
|------------------|--------------------|-----------|--|
|                  | 0000               |           |  |
| 00               | 00                 |           |  |

## Global spectrogram models nonnegative matrix factorization

#### activations over time



A. Ozerov, E. Vincent, and F. Bimbot. A general flexible framework for the handling of prior information in audio source separation. Audio, Speech, and Language Processing, IEEE Transactions on, PP(99):1, 2011
 Y. Salaün, E. Vincent, N. Bertin, N. Souviraà-Labastie, X. Jaureguiberry, D. Tran, and F. Bimbot. The Flexible Audio Source Separation Toolbox (FASST) version 2.0. In ICASSP, 2014

Liutkus\*, Fitzgerald, Rafii

KAML for scalable audio separation

04/22/2015

10/20

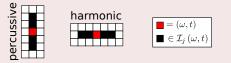
| Audio separation<br>000000<br>00 | Spectrogram models<br>○●○○<br>○○ | KAM Light<br>000 |  |
|----------------------------------|----------------------------------|------------------|--|
|                                  |                                  |                  |  |
|                                  |                                  |                  |  |

# Kernel spectrogram models principles

- NMF is a **global** single model for all of *p<sub>j</sub>*
- Sometimes, our knowledge is only local
  - $\Rightarrow$  We assume  $p_{j}(\omega, t)$  is equal to some **neighbours**  $\mathcal{I}_{j}(\omega, t)$

## Example: harmonic/percussive local models

- Percussive sounds are locally constant through frequency
- Harmonic sounds are locally constant through time



D. Fitzgerald. Harmonic/percussive separation using median filtering. In Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria, September 2010

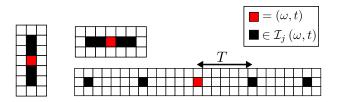
Liutkus\*, Fitzgerald, Rafii

KAML for scalable audio separation

04/22/2015 11/20

| Audio separation<br>000000<br>00 | Spectrogram models<br>00●0<br>00 | KAM Light<br>000 |  |
|----------------------------------|----------------------------------|------------------|--|
|                                  |                                  |                  |  |
| Kernel spect                     | rogram models                    |                  |  |

$$orall\left(\omega',t'
ight)\in\mathcal{I}_{j}\left(\omega,t
ight),\, p_{j}\left(\omega',t'
ight)pprox p_{j}\left(\omega,t
ight)$$





D. Fitzgerald. Harmonic/percussive separation using median filtering. In Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria, September 2010

Z. Rafii and B. Pardo. A simple music/voice separation method based on the extraction of the repeating musical structure. In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on, pages 221 – 224, may 2011

D. FitzGerald. Vocal separation using nearest neighbours and median filtering. In Proceedings of the 23nd IET Irish Signals and Systems Conference, pages 583–588, Maynooth, 2012

Z. Rafii and B. Pardo. Music/voice separation using the similarity matrix. In Proceedings of the 13th International Conference on Music Information Retrieval (ISMIR), pages 583–588, 2012

Liutkus\*, Fitzgerald, Rafii

examples

KAML for scalable audio separation

04/22/2015 12/20

| Audio separation | Spectrogram models | KAM Light |  |
|------------------|--------------------|-----------|--|
| 000000<br>00     | 0000<br>00         |           |  |
|                  |                    |           |  |

# Kernel spectrogram models objective

Combining all those local models together!

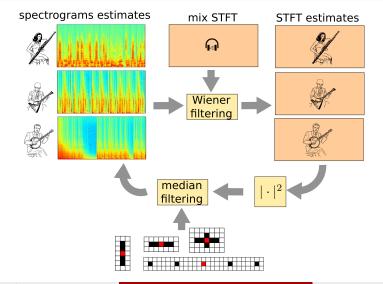
## Example: voice/music separation

- Musical background
  - 5 sources repeating at different scales (beat, downbeat, ...)
  - +1 source which is stable along time (strings, synths)
- Voice

with a locally constant spectrogram (cross-like kernel)

| Audio separation | Spectrogram models | KAM Light |  |
|------------------|--------------------|-----------|--|
| 000000<br>00     |                    |           |  |
|                  |                    |           |  |

# Kernel backfitting algorithm



Liutkus\*, Fitzgerald, Rafii

KAML for scalable audio separation

| Audio separation | Spectrogram models | KAM Light |  |
|------------------|--------------------|-----------|--|
|                  |                    |           |  |
|                  | 00                 |           |  |

# Kernel backfitting algorithm

### Input

Mixture STFT  $x(\omega, t)$ Neighbourhoods  $\mathcal{I}_j(\omega, t)$ , also called "proximity kernels"

## Initialization:

 $orall j, \hat{p}_{j}\left(\omega,t
ight) \leftarrow |x\left(\omega,t
ight)|^{2}$ : simply take mix spectrogram

### Iterate

## Separation with Wiener filtering

compute

estimates 
$$\hat{s}_{j}(\omega, t) = \left[\hat{p}_{j}(\omega, t) / \sum_{j'} \hat{p}_{j'}(\omega, t)\right] x(\omega, t)$$
  
Spectrograms fitting

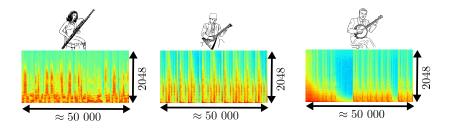
 $\hat{p}_{j}(\omega, t) \leftarrow \text{median filter } |\hat{s}_{j}|^{2} \text{ with kernel } \mathcal{I}_{j}(\omega, t)$ 

## **Output**: source estimates $\hat{s}_j$

Liutkus\*, Fitzgerald, Rafii

| Audio separation<br>000000<br>00 | Spectrogram models<br>0000<br>00 | KAM Light<br>●00 |  |
|----------------------------------|----------------------------------|------------------|--|
|                                  |                                  |                  |  |

# Scalability issues



Kernel models: no compact parameterization

 $\Rightarrow$  all spectrograms must be stored in full resolution

for 10 sources and a full length track:

approximately 32Gb of RAM needed!

Liutkus\*, Fitzgerald, Rafii

KAML for scalable audio separation

04/22/2015 16/20

| Audio separation<br>000000<br>00 | Spectrogram models<br>0000<br>00 | KAM Light<br>0●0 |  |
|----------------------------------|----------------------------------|------------------|--|
|                                  |                                  |                  |  |

# Low-rank models for compression

$$p_{j}(\omega, t) = \sum_{k=1}^{K} W(\omega, k) H(k, t)$$

## Different possible approaches

## Nonnegative matrix factorization

 W and H have nonnegative entries meaningful decompositions, but slow
 Truncated singular values decompositons (SVD)
 W and H are real not physically meaningful, but fast

## After filtering, compress spectrograms with a low-rank model

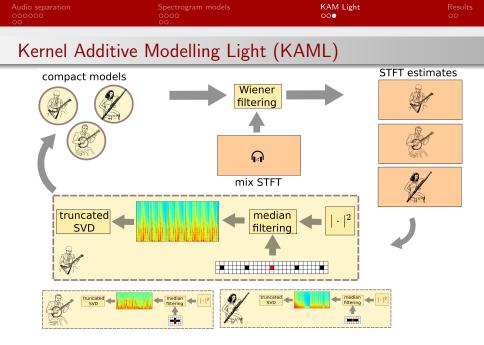
A. Ozerov, E. Vincent, and F. Bimbot. A general flexible framework for the handling of prior information in audio source separation. Audio, Speech, and Language Processing, IEEE Transactions on, PP(99):1, 2011

N. Halko, P. Martinsson, and J. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):217–288, 2011

Liutkus\*, Fitzgerald, Rafii

KAML for scalable audio separation

04/22/2015



Liutkus\*, Fitzgerald, Rafii

KAML for scalable audio separation

04/22/2015 18/20

| Audio separation<br>000000<br>00 | Spectrogram models<br>0000<br>00 | KAM Light<br>000 | Results<br>●0 |
|----------------------------------|----------------------------------|------------------|---------------|
|                                  |                                  |                  |               |
| Demo                             |                                  |                  |               |

external demo

| Audio separation | Spectrogram models | KAM Light | Results |
|------------------|--------------------|-----------|---------|
| 000000<br>00     | 0000               |           | 00      |

# Kernel Additive Modelling: conclusion

- A general framework for combining different kernel models
- Handles multichannel, full-length mixtures
- Easy to implement and fast algorithms
  - $\Rightarrow$  full demo at www.loria.fr/~aliutkus/kaml/

# To go further

## Formalization

- $\Rightarrow$  optimization framework with robust cost-functions
- $\Rightarrow$  equivalence with EM algorithm in some cases

# Combination with other techniques

- Learning source kernels automatically?
- $\Rightarrow$  maximizing size of kernel (robustness)
- $\Rightarrow$  maximizing invariance to median filtering